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Recognition-by-Components. A Theory of Human Image Understanding
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The perceptual recognition of objects is conceptualized to be a process in which the image of the
input is segmented at regions of deep concavity into an arrangement of simple geometric compo-
nents, such as blocks, cylinders, wedges, and cones. The fundamental assumption of the proposed
theory, recognition-by-components (RBC), is that a modest set of generalized-cone components,
called geons (N £ 36), can be derived from contrasts of fivereadily detectable properties of edgesin
a two-dimensiond image: curvature, collinearity, symmetry, pardlelism, and cotermination. The
detection of these propertiesisgeneral ly invariant over viewing position an$imagequal ity and conse-
quently dlows robust object perception when the image is projected from a novel viewpoint or is
degraded. RBC thus provides a principled account of the heretofore undecided relation between
the classic principles of perceptual organization and pattern recognition: The constraints toward
regularization (Pragnanz) characterize not the complete object but the object'scomponents. Repre-
sentational power derivesfrom an allowance of free combinations of the geons. A Principle of Com-
ponential Recovery can account for the major phenomena of object recognition: If an arrangement
of two or three geons can be recovered from theinput, objects can be quickly recognized even when
they are occluded, nove, rotated in depth, or extensvely degraded. The results from experiments
on the perception of briefly presented pictures by human observers provide empirical support for

thetheory.

Any single object can project an infinity of image configura-
tions to the retina. The orientation of the object to the viewer
can vary continuously, each giving rise to adifferent two-dimen-
sond projection. The object can be occluded by other objects
or texture fields, as when viewed behind foliage. The object
need not be presented as a full-colored textured image but in-
steed can beasimplified linedrawing. Moreover, the object can
even be missing some of its parts or be a novel exemplar of its
particular category. But it is only with rare exceptions that an
image fails to be rapidly and readily dassfied, either as an in-
stance of afamiliar object category or as an instance that cannot
be so classified (itsdf aform of classification).

A Do-lt-Y oursdf Example

Consider the object shown in Figure 1. We readily recognize
it as one of those objectsthat cannot be classified into afamiliar
category. Despiteitsoverdl unfamiliarity, thereis near unanim-
ity in its descriptions. We parse—or segment—its parts at re-
gions of deep concavity and describe those parts with common,
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simple volumetric terms, such as "a block,” "a cylinder,” "a
funnel or truncated cone” We can look at the zig-zag horizontal
brace as a texture region or zoom in and interpret it as a series
of connected blocks. The same istrue of the mass at the lower
left: we can se it as a texture area or zoom in and parse it into
its various bumps.

Although weknow that it isnot afamiliar object, after awhile
we can sy what it resembles "A New York City hot dog cart,
with the large block being the central food storage and cooking
area, the rounded part underneath as a whedl, the large arc on
theright asahandle, the funnel as an orangej uice squeezer and
the various vertica pipes as vents or umbrella supports” It is
not agood cart, but we can see how it might be related to one.
Itislikea 10-letter word with 4 wrong letters.

We readily conduct the same process for any object, familiar
or unfamiliar, in our foveal field of view. The manner of segmen-
tation and analysis into components does not appear to depend
on our familiarity with the particular object being identified.

The naive realism that emerges in descriptions of nonsense
objects may be reflecting the workings of a representational sys-
tem by which objects are identified.

An Analogy Between Speech and Object Perception

Aswill be argued in alater section, the number of categories
into which we can classify objects rivals the number of words
that can be readily identified when listening to speech. Lexica
acoess during speech perception can be successfully modeled as
aprocess mediated by the identification of individua primitive
elements, the phonemes, from a relatively small set of primi-
tives (Marden-Wilson, 1980). We only need about 44 phonemes
to code al thewordsin English, 15 in Hawaiian, 55 to represent
virtudly al the words in al the languages spoken around the
world. Because the st of primitives is so small and each pho-
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Figure 1. A do-it-yourself object. (There is strong consensus in the seg-
mentation loci of this configuration and in the description of its parts.)

neme specifiable by dichotomous (or trichotomous) contrasts
(e.g., voiced vs. unvoiced, nasd vs. ora) on a handful of attri-
butes, one need not make particularly fine discriminations in
the peech stream. The representational power of the system
derives from its permissiveness in alowing relatively free com-
binations of its primitives.

The hypothesis explored here isthat a roughly analogous sys-
tem may account for our capacities for object recognition. In
the visual domain, however, the primitive elements would not
be phonemes but a modest number of simple geometric compo-
nents—generaly convex and volumetric—such as cylinders,
blocks, wedges, and cones. Objects are segmented, typically at
regions of sharp concavity, and the resultant parts matched
againgt the bet fitting primitive. The set of primitives derives
from combinations of contrasting characterigtics of the edges in
atwo-dimensiona image (eg., straight vs. curved, symmetrical
vs. asymmetrical) that define differences among a set of simple
volumes (viz., those that tend to be symmetrical and lack sharp
concavities). Asin gpeech perception, these contrasts need only
be dichotomous or trichotomous rather than quantitative, so
that the human's limited capacities for absolute judgment are
not taxed. The particular properties of edges that are postulated
to be relevant to the generation of the volumetric primitives
have the desrable properties that they are invariant over
changes in orientation and can be determined from just a few
points on each edge. Consequently, they alow a primitive to
be extracted with great tolerance for variations of viewpoint,
occlusion, and noise.

Just as the relations among the phonemes are critical in lexi-
cd access—"fur" and "rough" have the same phonemes but
are not the same words—the relations among the volumes are
critical for object recognition: Two different arrangements of
the same components could produce different objects. In both
cas, the representational power derives from the enormous
number of combinations that can arise from a modest number
of primitives. The relations in speech are limited to left-to-right

(sequential) orderings; in the visual domain aricher set of poss-
ble relations alows a far grester representational capacity from
acomparable number of primitives. The matching of objectsin
recognition is hypothesized to be a processin which the percep-
tual input is matched against a representation that can be de-
scribed by a few simple categorized volumes in specified re-
lations to each other.

Theoretical Domain: Primal Accessto Contour-Based
Perceptual Categories

Our theoretical god is to account for the initial categoriza-
tion of isolated objects. Often, but not always, this categoriza-
tion will be at abasic level, for example, when we know that a
given object is a typewriter, a banana, or a giraffe (Rosch,
Mervis, Gray, Johnson, & Boyes-Braem, 1976). Much of our
knowledge about objectsis organized at this level of categoriza-
tion: thelevel at which thereistypically somereadily available
name to describe that category (Rosch et al., 1976). The hy-
pothesis explored here predictsthat when the componential de-
scription of aparticular subordinate diners substantially from
abasic-level prototype, that is, when asubordinateis perceptu-
aly nonprototypical, categorizationswill initially be made at
thesubordinate level. Thus, we might know that agiven object
is afloor lamp, a penguin, a sports car, or a dachshund more
rapidly than we know that it isa lamp, a bird, acar, or adog
(eg., Jolicoeur, Cluck, & Kosslyn, 1984). (For both theoretical
and expository purposes, these readily identifiable nonproto-
typical members [subordinates] of basic level categories will
aso beconsidered basic level inthisarticle.)

Count Versus Mass Noun Entities: The Role
of Surface Characteristics

There is a restriction on the scope of this approach of volu-
metric modeling that should be noted. The modeling has been
limited to concrete entities with specified boundaries. In En-
glish, such objects are typically designated by count nouns.
These are concrete objects that have specified boundaries and
to which we can apply the indefinite article and number. For
example, for acount noun such as "chair" we can say "a chair"
or "three chairs" By contrast, mass nouns are concrete entities
to which the indefinite article or number cannot be applied,
such as water, sand, or snow. So we cannot say “a water" or
"three sands”" unless we refer to a count noun shape, asin "a
drop of water," "a bucket of water,” "a grain of sand," or "a
snowball,” each of which does have a simple volumetric de-
scription. We conjecture that mass nounsare identified primar-
ily through surface characteristics such as texture and color,
rather than through volumetric primitives.

Primal Access

Under regtricted viewing and uncertain conditions, as when
an object is partialy occluded, texture, color, and other cues
(such as position in the scene and labels) may constitute part
or &l of the information determining memory access, as for
examplewhen weidentify aparticular shirt in the laundry pile
from seeingjust a bit of fabric. Such identificationsare indirect,
typically the result of inference over a limited s&t of posshle
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objects. (Additional analyses of the role of surface features is
presented later in the discussion of the experimental compari-

on of the perceptibility of color photography and line draw-

ings) The god of the present effort is to account for what can

be called primal access: the first contact of a perceptual input

from an isolated, unanticipated object to a representation in

memory.

Basic Phenomena of Object Recognition

Independent of |aboratory research, the phenomena of every-
day object identification provide strong constraints on possible
modelsof recognition. Inaddition to the fundamental phenom-
enon that objects can be recognized at all (not an altogether
obviousconclusion), at least fivefactsare evident. Typicaly, an
object can be recognized rapidly, when viewed most from novel.
orientations, under moderate levels of visual noise, whenjiar-
tially occluded, and when it isanew exernpTar of acategory.

The preceding five phenomena constrain theorizing about
objectinterpretationinthefollowingways:

1. Access to the mental representation of an object should
not be dependent on absolutejudgments of quantitative detail,
because such judgments are sow and error prone (Garner,
1962; Miller, 1956). For example, distinguishing among just
severd levels of the degree of curvature or length of an object
typically requires moretimethan that required for theidentifi-
cation of the object itself. Consequently, such quantitative pro-
cessing cannot be the controlling factor by which recognition is
achieved.

2. The information that is the basis of recognition should
be relatively invariant with respect to orientation and modest
degradation.

3. Partial matches should be computable. A theory of object
interpretation should have some principled means for comput-
ing amatch for occluded, partial, or new exemplars of a given
category. We should be able to account for the human's ability
toidentify, for example, achairwhen itispartially occluded by
other furniture, or when it ismissing aleg, or when it isa new
model.

Recognition-by-Components: An Overview

Our hypothesis, recognition-by-components (RBC), bears
some relation to severa prior conjectures for representing ob-
jects by parts or modules (e.g., Binford, 1971; Brooks, 1981,
Guzman, 1971;Marr, 1977, Marr & Nishihara, 1978;Tversky
& Hemenway, 1984). RBC'scontribution liesin its proposal for
a particular vocabulary of components derived from percep-
tual mechanisms and its account of how an arrangement of
these components can access a representation of an object in
memory.

Sages of Processing

Figure 2 presents a schematic of the presumed subprocesses
by which an object is recognized. These stages are assumed to
be arranged in cascade. An early edge extraction stage, respon-
siveto differencesin surface characteristics namely, luminance,
texture, or color, provides a line drawing description of the ob-
ject. From this description, nonaccidental properties of image
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edges (eg., collinearity, symmetry) are detected. Parsing is per-
formed, primarily at concave regions, simultaneously with ade-
tection of nonaccidental properties. The nonaccidental proper-
ties of the parsed regions provide critical constraints on the
identity of the components. Within the temporal and contex-
tual constraints of primal access, the stages up to and including
the identification of components are assumed to be bottpm-urj.'
A delay in the determination of an object's components should
have a direct effect on the identification |atency of the object.

The arrangement of the components is then matched against
a representation in memory. It is assumed that the matching
of the components occurs in parallel, with unlimited capacity.
Partial matches are possible with the degree of match assumed
to be proportional to the similarity in the components between
theimageand the representation.? Thisstage mode! ispresented
to provide an overal theoretical context. The focus of this arti-
cleison the nature of the units of the representation.

When an image of an object is painted on the retina, RBC
assumes that a representation of the image is segmented—or
parsed—into separate regions a points of deep concavity, par-
ticularly at cusps where there are discontinuities in curvature
(Marr & Nishihara, 1978). In general, paired concavities will
arise whenever convex volumes are joined, a principle that
Hoffman and Richards (1985) term transversal it y. Such seg
mentation conforms well with human intuitions about the
boundaries of object parts and does not depend on familiarity

* The only lop-down route shown in Figure 2 is an effect of the nonac-
cidenlat properties on edge extraction. Even this route (aside from col-
linearity and smooth curvature) would run counter to the desires of
many in computational vision (eg., Marr, 1982) to build a completely
bottom-up system for edge extraction. This assumption was developed
in the belief that edge extraction does not depend on prior familiarity
with the object. However, as with the nonaccidental properties, a top-
down route from the component determination stage to edge extraction
coutd precede independent of familiarity with the object itself. It is pos-
sible that an edge extraction system with a competence equivaent to
(hat of a human—an as yet unrealized accomplishment—will require
theinclusion of such lop-down influences. Itisaso likely that other top-
down routes, such as those from expectancy, object familiarity, or scene
constraints (e.g., Biederman, 1981; Biederrnan, Mezzanotte, & Rabin-
owitz, 1982), will be observed at a number of the stages, for example,
at segmentation, component definition, or matching, especialy if edges
are degraded. These have been omitted from Figure 2 in the interests of
simplicity and becausetheir actual pathsof influence are asyet undeter-
mined. By proposing ageneral account of object recognition, it is hoped
that the proposed theory will providea framework for aprincipled anal-
ysis of top-down effects in this domain.

2 Modeling the matching of an object image to a mental representa-
tion isarich, relatively neglected problem area. Tversky's (1977) con-
trast model provides a useful framework with which to consder this
similarity problem in that it readily allows distinctive features (compo-
nents) of the image to be considered separately from the distinctive com-
ponents of the representation. This allows principled assessments of
similarity for partial objects (componentsin the representation but not
in the image) and novel objects (containing components in the image
that are not in the representation). It may be possible to construct a
dynamic model based onaparallel distributed processasamodification
of the kind proposed by McClelland and Rumelhart (1981) for word
perception, with components playing the role of letters. One difficulty
of such an effort is that the sd of neighbors for a given word is well
specified and readily available from a dictionary; lhe set of neighbors
for a given object is not.
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Stages in Object Perception
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Figure 2. Presumed processing stages in object recognition.

with the object, aswas demonstrated with the nonsense object
in Figure 1.

Each segmented region isthen approximated by one of a pos-
sible st of simple components, called geons (for "geometrical
ions'), that can be modeled by generalized cones (Binford,
1971; Marr, 1977, 1982). A generdized cone is the volume
swept out by across section moving along an axis (asillustrated
in Figure 5). (Marr [1977, 1982] showed that the contours gen-
erated by any smooth surface could be modeled by a general-
ized cone with a convex cross section.) The cross section is typi-
caly hypothesized to be at right angles to the axis. Secondary
segmentation criteria (and criteria for determining the axis of a
component) are those that afford descriptions of volumes that
maximize symmetry, axislength, and constancy of the size and
curvature of the cross section of the component. Of these, sym-
metry often provides the most compelling subjective basis for
selecting subparts (Brady AAsada, 1984;Connell, 1985). These
secondary bases for segmentation and component identification
are discussed below.

The primitive components are hypothesized to be simple,
typically symmetrical volumes lacking sharp concavities, such
asblocks, cylinders, spheres, and wedges. The fundamental per-
ceptual assumption of RBC is that the components can be
differentiated on the basis of perceptual properties in the two-
dimensional image that are readily detectable and relatively in-
dependent of viewing position and degradation. These percep-
tual properties include severa that traditionally have been
thought of as principles of perceptual organization, such as

good continuation, symmetry, and Pragnanz. RBC thus pro-
vides a principled account of the relation between the classic
phenomenaof perceptual organization and pattern recognition:
Although objects can be highly complex and irregular, the units
by which objects are identified are simple and regular. The con-
straintstoward regul arization (Pragnanz.) arethusassumed to
characterize not the complete object bul the object's com-
ponents.

Color and Texture

The preceding account isclearly edge-based. Surfacecharac-
teristics such ascolor, brightness, and texture will typically have
only secondary rolesin primal access. Thisshould not beinter-
preted assuggesting that the perception of surfacecharacteris-
tics per se is delayed relative to the perception of the compo-
nents (but see Barrow & Tenenbaum, 1981), but merely that in
most cases the surface characteristics are generally less efficient
routesfor accessing theclassification of acount object. That is,
we may know that a chair has a particular color and texture
simultaneously with its componential description, but it isonly
thevolumetric description that providesefficient accessto the
mental representation of "chair.®

Relations Among the Components

Although the components themselves are the focus of this
article, as noted previously the arrangement of primitivesis
necessary for representing a particular object. Thus, an arc
side-connected to a cylinder can yield acup, as shown in Figure
3C. Different arrangements of the same components can readily
lead to different objects, aswhen an arc isconnected to the top
of the cylinder to produce a pail (Figure 3D). Whether acompo-
nent is attached to a long or short surface can also affect classi-
fication, aswith the arc producing either an attache case (Figure
3A) orastrongbox (Figure 3B).

The identical situation between primitives and their arrange-
ment existsin the phonemic representation of words, wherea
given subset of phonemes can be rearranged to produce differ-
entwords.

The representation of an object would thus be a structural
description that expressed therel ationsamong thecomponents
(Ballard & Brown, 1982; Winston, 1975). A suggested (mini-
mal) st of relations will be described later (see Table 1). These

8 There are, however, objects that would seem to require both a volu-
metric description and a texture region for an adequate representation,
such as hairbrushes, typewriter keyboards, and corkscrews. Itisunlikely
that many of theindividual bristles, keys, or coilsare parsed and identi-
fied prior to the identification of the object. Instead those regions are
represented through the statistical processing that characteri/.es their
texture (for example, Beck, Prazdny, & Rosenfeld, 1983; Julesz, 1981),
although we retain a capacity to zoom down and attend to the volu'met-
ric nature of the individual elements. The structural description that
would serve as a representation of such objects would include a statisti-
cd specification of the texture field along with a specification of the
larger volumetric components. These compound texture-componen-
tial objects have not been studied, but it is possible that the characteris-
tics of their identification would differ from objects that are readily de-
fined solely by their arrangement of volumetric components.
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figure 3. Different arrangements of the same components can produce different objects.

relationsinclude specification of the rel ative sizes of the compo-
nents, their orientation and the locus of their attachment.

Nonaccidental Properties: A Perceptual Basisfor a
Componential Representation

Recent theoretical analyses of perceptual organization (Bin-
ford, 1981; Lowe, 1984; Rock, 1983; Witkin & Tenenbaum,
1983) provide a perceptual basis for generating a st of geons.
The central organizational principle is that certain properties
of edges in a two-dimensional image are taken by the visual
system as strong evidence that the edges in the three-dimen-
sional world contain those same properties. For example, if
thereisastraight linein theimage (collinearity), the visual sys-
tem infersthat the edge producing that linein the three-dimen-
sional worldisaso straight. The visual system ignoresthe possi-
bility that the property in the image might be a result of a
(highly unlikely) accidental alignment of eye and curved edge.
Smoothly curved elementsin theimage (curvilinearity) aresim-
ilarly inferred to arise from smoothly curved features in the
three-dimensional world. These properties, and the others de-
scribed later, have been termed nonaccidental (Witkin & Tenen-
baum, 1983) in that they would only rarely be produced by
accidental alignmentsof viewpoint and object featuresand con-
sequently aregenerally unaffected by slight variationsin view-
point.

If the image is symmetrical (symmetry), we assume that the
object projecting that image is also symmetrical. The order of
symmetry isalso preserved: Imagesthat are symmetrical under
both reflection and 90° increments of rotation, such asasquare
or circle, are interpreted as arising from objects (or surfaces)
that are symmetrical under both rotation and reflection. Al-
though skew symmetry is often readily perceived as arising
from a tilted symmetrical object or surface (Palmer, 1983),
there are cases where skew symmetry is not readily detected
(Attneave, 1982). When edgesin theimage are parallel or coter-
minatc we assume that the real-world edges also are parallel or
coterminate, respectively.

These five nonaccidental properties and the associated three-
dimensional inferences are described in Figure 4 (adapted from
Lowe, 1984). Witkin and Tenenbaum (1983; see dso Lowe,
1984) argue that the leverage provided by the nonaccidental re-
lations for inferring a three-dimensiona structure from a two-
dimensional image edges is so great as to pose a challenge to the
effort in computational vision and perceptua psychology that
assigned central importance to variation in loca surface char-
acteristics, such as luminance gradients, from which surface

curvature could be determined (asin Bed & Jain, 1986). Al-
though a surface property derived from such gradients will be
invariant over some transformations, Witkin and Tenenbaum
(1983) demonstrate that the suggestion of a volumetric compo-
nent through the shape of the surface's silhouette can readily
override the perceptual interpretation of the luminance gradi-
ent. The psychological literature, summarized in the next sec-
tion, provides considerable evidence supporting the assumption
that these nonaccidental properties can serve as primary organi-
zational constraints in human image interpretation.

Psychological Evidencefor the Rapid Use of
Nonaccidental Relations

There can be little doubt that images are interpreted in a
manner consistent with the nonaccidental principles. But are
these relations used quickly enough to provide a perceptua ba-
ss for the components that allow primal access? Although dl
the principles have not received experimental verification, the
available evidence strongly suggests an affirmative answer to the
preceding question. There is strong evidence that the visua sys-
tem quickly assumes and uses collinearity, curvature, symme-
try, and cotermination. Thisevidence is of two sorts: (&) demon-
strations, often compelling, show'.ng that when a given two-di-
mensional relation is produced by an accidental alignment of
object and image, the visual system accepts the relation as exist-
ing in the three-dimensional world; and (b) search tasks showing
that when a target differs from distractors in a nonaccidental
property, as when one is searching for a curved arc among
straight segments, the detection of that target is facilitated com-
pared to conditions where targets and background do not differ
in such properties.

Collinearity versus curvature. The demonstration of the col-
linearity or curvature relations is too obvious to be performed
as an experiment. When looking a a straight segment, no ob-
server would assume that it is an accidental image of a curve.
That the contrast between straight and curved edges is readily
available for perception was shown by Neisser (1963). He found
that a search for a letter composed only of straight segments,
such asa Z, could be performed faster when in afield of curved
distractors, such as C, G, O, and Q, then when among other
letters composed of straight segments such as N, W, V, and M.

Symmetry and parallelism. Many of the Ames demonstra-
tions (Ittleson, 1952), such as the trapezoidal window and Ames
room, derive from an assumption of symmetry that includes
paralelism. Palmer (1980) showed that the subjective direction-
ality of arrangements of equilateral triangles was based on the
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Principle of Non-Accidentolness' Critical information is unlikely to be a
consequence of on accident of viewpoint.

Three Soace Inference from Image Features
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Figure 4. Five nonaccidental relaions. (From Figure 5.2, Perceptual
organization and visual recognition [p. 77] by David Lowe. Unpub-
lished doctorial dissertation, Stanford University. Adapted by permis-
sion.)

derivation of an axis of symmetry for the arrangement. King,
Meyer, Tangney, and Biederman (1976) demonstrated that a
perceptua  bias toward symmetry contributed to apparent
shape constancy effects. Gamer (1974), Checkosky and Whit-
lock (1973), and Pomerantz (1978) provided ample evidence
that not only can symmetrical shapes be quickly discriminated
from asymmetrical stimuli, but that the degree of symmetry
was aso areadily available perceptua distinction. Thus, stimuli
that were invariant under both reflection and 90° incrementsin
rotation could be rapidly discriminated from those that were
only invariant under reflection (Checkosky & Whitlock, 1973).

Cotermination. The"peephole perception” demonstrations,
such as the Ames chair (Ittleson, 1952) or the physical rediza
tion of the "impossible’ triangle (Penrose & Penrose, 1958),
are produced by accidental alignment of the ends of noncoter-
minous segmentsto produce—from one viewpoint only—L, Y,
and arrow vertices. More recently, Kanade (1981) has presented
a detailed analysis of an "accidenta" chair of his own construc-
tion. The success of these demonstrations document the imme-
diate and compelling impact of cotermination.

The registration of cotermination is important for determin-
ing vertices, which provide information that can serve to distin-
guish the components. In fact, one theorist (Binford, 1981) has
suggested that the major function of eye movements is to deter-
mine coincidence of segments. “Coincidence’ would include
not only cotermination of edges but the termination of one edge
on another, as with a T vertex. With polyhedra (volumes pro-
duced by planar surfaces), the Y, arrow, and L vertices alow

inference as to the identity of the volume in the image. For ex-
ample, the silhouette of abrick containsaseries of six vertices,
which alternate between Lsand arrows, and aninternal Y ver-
tex, asillustrated in Figure 5. The Y vertex isproduced by the
cotermination of three segments, with none of the angles
greaterthan 180°. (Anarrow vertex, alsoformed fromthecoter-
mination of three segments, contains an angle that exceeds
180°% an L vertex is formed by the cotermination of two seg
ments.) Asshown in Figure 5, thisvertex is not present in com-
ponents that have curved cross sections, such ascylinders, and
thus can provide a distinctive cue for the cross-section edge.
(Thecurved Y vertex present inacylinder can bedistinguished
fromtheY or arrow verticesin that thetermination of oneseg-
mentin thecurved Y istangent to the other segment [ Chakra-
varty, 1979].)

Perkins (1983) has described a perceptual biastoward paral-
lelism in the interpretation of this vertex.* Whether the pres-
enceofthisparticularinternal vertex canfacilitatetheidentifi-
cation of abrick versusacylinder isnot yet known, but arecent
study by Biederman and Blickle (1985), described below, dem-
ongtrated that deletion of vertices adversely affected object rec-
ognition more than deletion of the same amount of contour at
midsegment.

The T vertex representsaspecia casein that it is not alocus
of cotermination (of two or more segments) but only thetermi-
nation of one segment on another. Such verticesareimportant
for determining occlusion and thus segmentation (along with
concavities), in that the edge forming the (normally) vertical
segment of the T cannot becloser to the viewer than the segment
forming the top of the T (Binford, 1981). By this account, the
T vertex might have a somewhat different status than the Y,
arrow, and L vertices, in that the T's primary role would be
in segmentation, rather than in establishing theidentity of the
volume.®

Vertices composed of three segments, such asthe Y and ar-

#When such vertices formed the central angle in a polyhedron, Per-
kins (1983) reported that the surfaces would almost always be inter-
preted as meeting at right angles, as long as none of the three angles was
lessthan 90°. Indeed, such vertices cannot be projections of acute angles
(Kanade, 1981) but thehuman appearsinsensitivetothe possibility that
the vertices could have arisen from obtuse angles. If one of the anglesin
the central Y vertex was acute, then the polyhedrawould be interpreted
as irregular. Perkins found that subjects from rural aress of Botswana,
where there was a lower incidence of exposure to carpentered (right-
angled) environments, had an even stronger bias toward rectilinear in-
terpretations than did Westerners (Perkins & Deregowski, 1982).

° The arrangement of vertices, particularly for polyhedra, offers con-
straints on "possble’ interpretations of lines as convex, concave, or
occluding (eg., Sugihara, 1984). In general, the constraints take the
form that asegment cannot change itsinterpretation, for example, from
concave to convex, unless it passes through a vertex. "Impossible” ob-
jects can be constructed from violations of this constraint (Waltz, 1975)
as well as from more general considerations (Sugihara, 1982, 1984). It
istempting to consider that the visual system captures these constraints
in the way in which edges are grouped into objects, but the evidence
would seem to argue against such an interpretation. The impossibility
of most impossible objects is not immediately registered, but requires
scrutiny and thought before the inconsistency is detected. What this
meansin the present context is that the visual system has a capacity for
classifying vertices locally, but no perceptua routines for determining
the globa consistency of a set of vertices.
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Some Nonaccidental Differences Between a Brick and a Cylinder

Brick Cylinder
tne : Two tangent Y verti
the‘ wo ngen vertices
Three Three (Occluding edge tangent
parallel outer 3its;/§nrttiiﬁotf; edge)
edges arrow
vertices Curved edges
Two parallel
edges

Figure 5. Some differences in nonaccidental properties between a cylinder and a brick.
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row, andtheir curved counterparts, areimportant determinants
astowhether agivencomponentisvolumetricor planar. Planar
components(to hediscussed | ater) lack three-pronged vertices.

The high speed and accuracy of determiningagiven nonacci-
dental relation (e.g., whether some pattern, is symmetrical)
should be contrasted with performance in making absolute
quantitativejudgmentsof variationsin asingle physical attri-
bute, such as |ength of a segment or degree of tilt or curvature.
For exampl e, thejudgment asto whether the length of agiven
segment s 10, 12, 14, 16, or 18 cmisnotoriously slow and error
prone (Beck, Prazdny, & Rosenfeld, 1983; Fildes & Triggs,
1985; Garner, 1962; Miller, 1956; Virsu, 1971a, 1971b). Even
these modest performance levels are challenged when the judg-
ments have to be executed over the brief 100-ms intervals
(Egeth & Pachella, 1969) that are sufficient for accurate object
identification. Perhaps even more telling against a view of ob-
ject recognition that postulates the making of absolute judg-
ments of fine quantitative detail is that the speed and accuracy
of such judgments decline dramatically when they have to be
made for multiple attributes (Egeth & Pachella, 1969; Garner,
1962; Miller, 1956). In contrast, object recognition latenciesfor
complex objects are reduced by the presence of additional (re-
dundant) components (Biederman, Ju, & Clapper, 1985, de-
scribed below).

Geons Generated From Differencesin Nonaccidental
Properties Among Generalized Cones

| have emphasized the particular set of nonaccidental proper-
ties shown in Figure 4 because they may constitute a perceptual
basis for the generation of the set of components. Any primitive

that ishypothesized to be the basis of object recognition should
berapidly identifiableand invariant over viewpoint and noise.
These characteristics would be attainable if differences anong
componentswere based on differencesin nonaccidental proper-
ties. Although additional nonaccidental properties exist, there
is empirical support for rapid perceptual access to the five de-
scribed in Figure 4. In addition, thesefiverelations reflect intu-
itions about significant perceptual and cognitive differences
among objects.

From variation over only two or threelevelsin the nonaccidental
relations of four attributes of generdized cylinders, a set of 36
geonscan begenerated. A subset isillustrated in Figure6.

Six of the generated geons (and their attribute values) are
shown in Figure 7. Three of the attributes describe characteris-
tics of the cross section: its shape, symmetry, and constancy of
Size as it is swept dong the axis. The fourth attribute describes
the shape of the axis. Additional volumes are shown in Figures
8and 9.

Nonaccidental Two-Dimensional Contrasts
Among the Geons

Asindicated in the above outline, the values of the four gener-
alized cone attributes can be directly detected as contrastive
differences in nonaccidental properties: straight versus curved,
symmetrical versus asymmetrical, parallel versus nonparallel
(and if nonparallel, whether thereisa point of maximal convex-
ity). Cross-section edges and curvature of the axis are distin-
guishable by collinearity or curvilinearity. The constant versus
expanded size of the cross section would be detectable through
parallelism; a constant cross section would produce a general-



Figured. Anillustration of how variationsin three attributes of a cross
section (curved vs. straight edges, constant vs. expanded vs. expanded
and contracted size; mirror and rotational symmetry vs. mirror symme-
try vs. asymmetrical) and one of the shape of the axis (straight vs.
curved) can generate a set of generalized cones differing in nonacciden-
td relations. (Constant-sized cross sections have parallel sides, ex-
panded or expanded and contracted cross sections have sides that are
not parallel. Curved versus straight cross sections and axes are detect-
ablethrough collinearity or curvature. The three values of cross-section
symmetry [symmetrical under reflection & 90* rotation, reflection only,
or asymmetrical] are detectable through the symmetry relation. Neigh-
bors of a cylinder are shown here. The full family of geons has 36 mem-
bers)

ized cone with paralel sides (as with a cylinder or brick); an
expanded cross section would produce edges that were not par-
dld (as with a cone or wedge). A cross section that expanded
and then contracted would produce an ellipsoid with nonparal-
ldl sdes and extrema of positive curvature (as with a lemon).
Such extrema are invariant with viewpoint (eg., Hoffman &
Richards, 1985) and actualy constitute a sixth nonaccidental
relation. The three levels of cross-section symmetry are equiva-
lent to Garner's (1974) distinction asto the number of different
stimuli produced by increments of 90* rotations and reflections
of astimulus. Thus, a square or circle would be invariant under
90* rotation and reflection, but a rectangle or ellipse would be
invariant only under reflection, as 90* rotations would produce
another figure in each casa Asymmetrical figures would pro-
duce eight different figures under 90* rotation and reflection.
Specification of the nonaccidental properties of the three at-
tributes of the cross section and one of the axis, asdescribed in
the previous paragraph, is sufficient to uniquely classify a given
arrangement of edges as one of the 36 geons. These would be
matched against a structural description for each geon that
specified the values of these four nonaccidental image proper-
ties. But there are actually more distinctive nonaccidental im-
age features for each geon than the four described in the previ-
ous paragraph (or indicated in Figures 7, 8, and 9). In particu-
lar, the arrangement of vertices, both of the silhouette and the
presence of an interior Y vertex, and the presence of a discon-
tinuous (third) edge aong the axis (which produces the interior
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Y vertex) provide aricher description for each component than
dothefour propertiesof thegenerating function. Thispoint can
be readily appreciated by considering, as an example, some of
the additional nonaccidental propertiesdifferentiating the brick
from the cylinder in Figure 5. Fach geon's structural descrip-

. tion would thus include alarger number of contrastive image

propertiesthanthefourthat weredirectly relatedtothegenerat-
ing function.

Consideration of thefeatural basisfor thestructural descrip-
tions for each geon suggests that a similarity measure can be
defined on the basis of the common versus distinctive image
features for any pair of components. The similarity measure
would permit the promotion of alternative geons under condi-
tions of ambiguity, aswhen one or severa of theimage features
were undecidable.

h geon identification twit-dimensional or three-dimensional".’
Although the 36 geonshave aclear subjective volumetricinter-
pretation, it must beemphasized they can beuniquely specified
from their two-dimensional image properties. Consequently,
recognition need not follow the construction of an "object cen-
tered" (Marr, 1982) three-dimensional interpretation of each
volume. It is aso possible that, despite the subjective compo-
nential interpretation given to the arrangement of image fea-
tures as simple volumes, it is the image features themselves, in
specified relationships, that mediate perception. These alterna-
tivesremain to be eval uated.

Additional Sources of Contour and
Recognition Variation

RBC seeksto account for therecognition of aninfinitely var-
ied perceptua input with a modest set of idealized primitives.

Partial Tentative Geon Set Based on Nonaccidentalness Relations

CROSS SECTION

E&fi Svmmetry Size Alis

Geon Straight S Roi8Ref++ |Constant++ | Straight +
Curved C Ref+ E«ponded - | Curved -

Asymm- Exp 8 Cont—

@ S ¥ ++ +
@ ¢ ++ Ty +
@ s + - +
@ S *+ + -
0 [ ++ - +
ﬁ § + + +

Figure 7. Proposed partial set of volumetric primitives (geons)
derived from differencesin nonaccidental properties.
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Geons with Expanded and Contracted Cross Sections (—)

Cross Section'
Edge- Curved (C)
Symmetry: Yes (+)
Size Expanded 8 Contracted”--)

(Lemon) Axis Straight (+)

Cross Section:
Edge: Curved (C)
Symmetry: Yes (+)
Size: Expanded (+)

(Horn) Axis: Curved (-)

Cross Section:
Edge: Curved (C)
Symmetry: Yes (+)
Size Expanded ft Contracted (--)

Axis Curved (-)
(Gourd)

Figuri' 8. Three curved geonswith curved axesor expanded and/or con-
tracted cross sections. (These tend to resemble biological forms.)

A number of subordinate and related issues are raised by this
attempt, some of which will be addressed in this section. This
section need not be covered by a reader concerned primarily
with the overall gist of RBC.

Asymmetrical crosssections. Thereareaninfinity of possible
crosssectionsthat could beasymmetrical. How does RBC rep-
resent this variation? RBC assumes that the differences in the
departures from symmetry are not readily available and thus
do not affect primal access. For example, the difference in the
shape of the cross section for thetwo straight-edged volumesin
Figure 10 might not be apparent quickly enough to affect object
recognition. Thisdoes not mean that an individual could not
store the details of the volume produced by an asymmetrical
cross section. But the presumption is that the access for this
detail would be too dow to mediate primal access. | do not
know of any case where primal access depends on discrimina-
tion among asymmetrical cross sectionswithin agiven compo-
nent type, for example, among curved-edged cross sections of
constant size, straight axes, and a specified aspect ratio. For in-
stance, the curved cross section for the component that can
model an airplanewing or car door isasymmetrical. Different
wing designs might have different shaped cross sections. It is
likely that most people, includingwingdesigners, will know that
the object is an airplane, or even an airplane wing, before they
know thesubcl assification of thewing on the basisof theasym-
metry of its cross section.

A second way in which asymmetrical cross sections need not
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be individually represented is that they often produce volumes
that resemble symmetrical, but truncated, wedges or cones.
This latter form of representing asymmetrical cross sections
would be analogous to the schema-plus-correction phenome-
non noted by Bartlett (1932). The implication of a schema
plus-correction representation would bethat asingle primitive
category for asymmetrical cross sections and wedges might be
sufficient. For both kindsof volumes, their similarity may bea
function of the detection of alack of parallelism in the volume.
One would have to exert scrutiny to determine whether alack
of parallelism had originated in the cross section or in a Sze
change of a symmetrical cross section. In this case, as with the
components with curved axes described in the preceding sec-
tion, asingle primitive category for both wedges and asymmet-
rical straight-edged volumes could be postulated that would a-
low areduction in the number of primitive components. There
is considerable evidence that asymmetrical patterns require
more time for their identification than symmetrical patterns
(Checkosky & Whitlock, 1973; Pomerantz, 1978). Whether
these effects have consequences for the time required for object
identificationisnotyet known.

One other departure from regular components might aso be
noted. A volume can have a cross section with edges that are
both curved and straight, aswould result when acylinder is sec-
tioned in half along its length, producing a semicircular cross
section. The conjecture is that in such cases the default cross
section isthe curved one, with the straight edges interpreted as
dices off the curve, in schema-plus-correction representation
(Bartlett, 1932).

CROSS SECTION

Edge. Symmetry Slig Anis
Straight S }IRot SRef-n- {Constant ++ | Straight +
geon iCurved C w + Expanded- | Curved-
Asvmm- E«pftCont--
@ S ++ - -
@ c ++ - -
=l ¢ | - | - | -

Figure V. Geonswith curved axis and straight or curved cross sections.
(Determining the shape of the cross section, particularly if straight,
might require attention.)
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Figure 10. Volumeswith an asymmetrical, straight-edged, cross section.
(Detection of differences between such volumes might require atten-
tion.)

Component terminations. When a cross section variesin size,
as with a cone, it can converge to a point, as with the horn in
Figure 8, or appear truncated, as with the cone in Figure 7.
Such termination differences could be represented as indepen-
dently specified characterigtics of the structural description for
the geon, determinable in the image by whether the termination
was a single L vertex (with a point) or two tangent Y vertices
(with atruncated cone).

Another case aises when a cylinder has a cross section that
remains constant for part of its length but then tapers to pro-
duce a point, as with a sharpened pencil. Such objects could be
modeled by joining a cylinder to a cone, with the size of the
cross sections matched so that no concavity is produced. The
parsing point in this case would be thejoin where different non-
accidental properties were required to fit the volumes, namely,
the shift from parald edges with the cylinder to converging
edges with the cone. Such joins provide a decidedly weaker ba-
sis—subjectively—for segmentation than joins producing

cusps. The perceptual consequences of such variation have not
been studied.

Metricvariation. For any givengeontype, therecan becontin-
uous metric variation in aspect ratio, degree of curvature (for
curved components), and departurefrom parallelism (for non-
parallel components). How should thisquantitative variation
be conceptuali/.ed? The discussion will concentrate on aspect
ratio, probably the most important of the variations. But the
issueswill begenerally applicableto the other metric variations
aswell ®

One possibility isto include specification of a range of aspect
ratios in the structural description of the geons of an object as
well astheobject itself. It seems plausibleto assume that recog-
nition can be indexed, in part, by aspect ratio in addition to a
componential description. An object's aspect ratio would thus
play arolesimilar to that played by word length in the tachisto-
scopic i dentification of words, wherelongwordsarerarely prof-
fered when a short word is flashed. Consider an elongated ob-
ject, such asabaseball bat, with an aspect ratio of ! 5:1. When
the orientation of the object is orthogond to the viewpoint, so
that the agpect ratio of itsimageisalso 15:1, recognition might
be faster than when presented at an orientation where the aspect
ratio of its image differed greatly from that value, sy 2:1. One
need not have aparticularly fine-tuned function for aspect ratio
as large differences in aspect ratio between two components
would, like parallelism, be preserved over alarge proportion of
arbitraryviewingangles.

Another way to incorporate variations in the aspect ratio of
an object'simageisto represent only qualitativedifferences, so
that variations in aspect ratios exert an effect only when the
relative sze of the longes dimensions undergo reversa. Spe-
cificaly, for each component and the complete object, three
variationscould be defined depending on whether the axis was
much smaller, approximately equal to, or much longer than the
longest dimension of the cross section. For example, for ageon
whose axis was longer than the diameter of the cross section
(which would be true in most cases), only when the projection
of the cross section became longer than the axis would there be
an effect of the object's orientation, as when the bat was viewed
amost from on end so that the diameter of the handle was
greater than the projection of its length.

A close dependence of object recognition performance on the
preservation of the aspect ratio of a geon in the image would
challenge RBC's emphasis on dichotomous contrasts of nonac-
cidental relations. Fortunately, these issues on the role of aspect
ratio are readily testable. Bartram's (1976) experiments, de-
<cribed later in the section on orientation variability, suggest
that sensitivity to variations in aspect ratio need not be given
heavy weight: Recognition speed is unaffected by variation in
agoect ratio across different views of the same object.

Planar geons. When athree-pronged vertex (viz., Y, tangent
Y, or arrow) is not present in a parsed region, the resultant re-
gion appears planar, aswith the flipper of the penguin in Figure

© Aspect ratio is a measure of the elongation of a component. For
constant-sized cross sections and straight axes, it can be expressed as
the width-to-height ratio of the smallest bounding rectangle that would
just enclose the component. More complex functions are needed ex-
pressing the change in aspect ratio as a function of axis position when
the cross section varies in size or the axis is curved.
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10 or the eye of the elephant in Figure 11. Such shapes can be
conceptualized in two ways. The first (and less favored) is to
assume that these arejust quantitative variations of the volu-
metriccomponents, but with anaxislength of zero. They would
then have default values of a straight axis (+) and a constant
cross section (+). Only the edge of the cross section and its sym-
metry could vary.

Alternatively, it might be that aplanar region is not related
perceptually to the foreshortened projection of the geon that
could have produced it. Using the same variation in cross-sec-
tion edge and symmetry as with the volumetric components,
seven planar geons could be defined. For ++symmetry there
would be the square and circle (with straight and curved edges,
respectively) and for +symmetry the rectangle, triangle, and el-
lipse. Asymmetrical (-) planar geons would include trapezoids
(straight edges), and drop shapes (curved edges). The addition
of these seven planar geons to the 36 volumetric geons yields
43 components (a number close to the number of phonemes
required to represent English words). The triangle is here as-
sumed to define a separate geon, although a triangular cross
section was not assumed to define a separate volume under the
intuition that a prism (produced by atriangul ar cross section)
isnot quickly distinguishable from awedge. My preferencefor
assuming that planar geons are not perceptualy related to their
foreshortened volumesisbased on theextraordinary difficulty
of recognizing objectsfrom viewsthat are parallel to theaxisof
the major components so that foreshortening projects only the
planar cross section, as shown in Figure 27. The presence of
three-pronged vertices thus provides strong evidence that the
image isgenerated from a volumetric rather than a planar com-
ponent.

Selection of axis. Given that avolume is segmented from the
object, how isan axis selected? Subjectively, it appears that an
axisisselected that would maximizetheaxis'slength, thesym-
metry of the cross section, and the constancy of the size of the
cross section. By maximizing the length of the axis, bilateral
symmetry can be more readily detected because the sideswould
becloser totheaxis. Often asingle axissatisfiesall threecriteria,
but sometimes these criteria are in opposition and two (or
more) axes (and component types) are plausible (Brady, 1983).
Under such conditions, axeswill often bealigned to an external
frame, such asthevertical (Humphreys, 1983).

Negative values. The plus values in Figures 7, 8, and 9 are
those favored by perceptual biases and memory errors. No bias
isassumed for straight and curved edges of the cross section. For
symmetry, clear biases have been documented. For example, if
an image could have arisen from a symmetrical object, then it
isinterpreted as symmetrical (King et a., 1976). The same is
apparently true of parallelism. If edges could be parallel, then
they are typically interpreted as such, as with the trapezoidal
room or window.

Curved axes. Figure 8 shows three of the most negatively
marked primitiveswith curved crossed sections. Such geons of -
ten resemble biologica entities. An expansion and contraction
of arounded cross section with a straight axis produces an ellip-
soid (lemon), an expanded cross section with acurved axis pro-
duces a horn, and an expanded and contracted cross section
with a rounded cross section produces a banana slug or gourd.

In contrast to the natural forms generated when both cross
section and axis are curved, the geons swept by a straight-edged

cross section traveling dlong a curved axis (e.g., the components
on thefirgt, third, and fifth rows of Figure 9) appear somewhat
lessfamiliar and more difficult to apprehend than their curved
counterparts. It is possible that this difficulty may merely bea
consequence of unfamiliarity. Alternatively, the subjective
difficulty might be produced by a conjunction-attention effect
(CAE) of the kind discussed by Treisman (eg., Treisman & Gel-
ade, 1980). (CAEs are described later in the section on atten-
tional effects.) In the present case, given the presence in the im-
age of curves and straight edges (for the rectilinear cross sec-
tionswith curved axis), attention (or scrutiny) may be required
to determine which kind of segment to assign to the axis and
which to assign to the cross section. Curiously, the problem
does not present itself when a curved cross section is run aong
a straight axis to produce a cylinder or cone. The issue as to
the role of attention in determining geons would appear to be
empirically tractable using the paradigms created by Treisman
and her colleagues (Treisman, 1982; Treisman & Gelade, 1980).

Conjunction-attentional effects. The time required to detect
asingle feature is often independent of the number of distract-
ing items in the visual field. For example, the time it takes to
detect a blue shape (a square or a circle) among afield of green
distractor shapes is unaffected by the number of green shapes.
However, if the target isdefined by a conjunction of features, for
example, a blue square among distractors consisting of green
squares and blue circles, so that both the color and the shape of
each item must be determined to know ifit isor is not the target,
then target detection timeincreases linearly with the number of
distractors (Treisman & Gelade, 1980). These results have led
to a theory of visual attention that assumes that humans can
monitor all potential display positions simultaneously and with
unlimited capacity for a single feature (e.g., something blue or
something curved). But when a target is defined by a conjunc-
tion of features, then a limited capacity attentional system that
can only examine one display position at a time must be de-
ployed (Treisman & Gelade, 1980).

The extent to which Treisman and Gelade's (1980) demon-
stration of conjunction-attention effects may be applicable to
the perception of volumes and objects has yet to be evaluated.
In the extreme, in a given moment of attention, it may be the
case that the values of the four attributes of the components are
detected as independent features. In cases where the attributes,
taken independently, can define different volumes, aswith the
shape of cross sections and axes, an act of attention might be
required to determine the specific component generating those
attributes: Am | looking at a component with a curved cross
section and a straight axis or is it a straight cross section and
a curved axis? At the other extreme, it may be that an object
recognition system has evolved to alow automatic determina-
tion of the geons.

The more general issue is whether relational structures for
the primitive components are defined automatically or whether
a limited attentional capacity is required to build them from
their individual-edge attributes. It could be the case that some
of the most positively marked geons are detected automatically,
but that the volumes with negatively marked attributes might
require attention. That some limited capacity isinvolved in the
perception of objects (but not necessarily their components) is
documented by an effect of the number of distracting objects
on perceptual search (Biederman, Blickle, Teitelbaum, Klatsky,
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& Mezzgnotte, in press). In their experiment, reaction times
and errors for detecting an object such asachair increased lin-
early as afunction of the number of nontarget objectsin a 100-
ms presentation of nonscene arrangements of objects. Whether
this effect arises from the necessity to use a limited capacity to
construct , geon from itsattributes or whether the effect arises
from the matching of an arrangement of gecns to a representa
tionisnot yet known.

Relations of RBC to Principles
of Perceptual Organization

Textbook presentations of perception typically include a sec-
tion of Gestalt organizational principles. This section is amost
never linked to any other function of perception. RBC posits
a specific le for these organizational phenomena in pattern
recoghition. As suggested by the section on generating geons
through nonaccidental properties, the Gestalt principles, par-
ticularly those promoting Pragnanz (Good Figure), serve to de-
termine the individual geons, rather than the complete object.
A complete object, such asachair, can be highly complex and
asymmetrical, but the components will be simple volumes. A
consequence of this interpretation is that it is the components
that will be stable under noise or perturbation. If the compo-
nents can be recovered and object perception is based on the
components, then the object will be recognizable.

This may bethe reason why it is difficult to camouflage ob-
jects by moderate doses of random occluding noise, as when
aca is viewed behind foliage. According to RBC, the geons
accessng the representation of an object can readily be recov-
ered through routines of collinearity or curvature that restore
contours (Lowe, 1984). These mechanisms for contour restora
tion will not bridge cusps (eg., Kaflizsa, 1979). For visual noise
to be effective, by these considerations, it must obliterate the
concavity and interrupt the contours from one geon at the pre-
cise point wherethey can bejoined, through collinearity or con-
stant curvature, with the contours of another geon. The likeli-
hood of this occurring by moderate random noise is, of course,
extraordinarily low, and it is a maor reason why, according to
RBC, objects are rarely rendered unidentifiable by noise. The
congstency of RBC with thisinterpretation of perceptual orga
nization should be noted. RBC holds that the (strong) loci of
parsing is a cusps; the geons are organized from the contours
between cusrjs. In dassicd Gestalt demonstrations, good figures
are organize™ from the contours between cusps. Experiments
;ﬂct%jlgn:ting these conjectures to test are described in a later

A Limited Number of Components?

According to the prior arguments, only 36 volumetric com-
ponents can be readily discriminated on the basis of differences
in nonaccidental properties among generalized cones. In addi-
tion, there are empirical and computational considerations that
are compatible with a such alimit.

Empirically, people are not sensitive to continuous metric
variations as evidenced by severe limitations in humans' capac-
ity for making rapid and accurate absol ute judgments of quanti-
tative shape variations.” The errors made in the memory for
shapes dso document an insensitivity to metric variaions.

Computationally, alimit is suggested by estimates of the num-
ber of objects we might know and the capacity for RBC to
readily represent afar greater number with alimited number
of primitives.

Empirical Supportfor a Limit

Although the visual system is capable of discriminating ex-
tremelyfinedetail, | havebeenarguingthat thenumber of volu-
metricprimitivessufficienttomodel rapid human object recog-
nition may be limited. It should be noted, however, that the
number of proposed primitivesisgreater than thethree—cylin-
der, sphere, and cone—advocated by some "How-to-Draw"
books. Although thesethree may besufficient for determining
relative proportions of the parts of afigure and can aid perspec-
tive, they are not sufficient for the rapid identification of ob-
jects® Similarly, Marr and Nishihara's (1978) pipe-cleaner
(viz., cylinder) representations of animals (their Figure 17)
woul dasoappeartopositani nsufficientnumberof primitives.
On the page, in the context of other labeled pipe-cleaner ani-
mals, it is certainly possble to arrive at an identification of a
particular (labeled) animal, forexample, agiraffe.Butthethesis
proposed herewoul d hold that theidentifications of objectsthat
were distinguished only by the aspect ratios of a single compo-
nent type would require more time than if the representation
of the object preserved its componential identity. In modeling
onlyanimals, itislikely that Marrand Nishiharacapitalized on
the possibility that appendages (such as legs and some necks)
can often be modeled by thecylindrical formsof a pipe cleaner.
By contrast, it isunlikely that a pipe-cleaner representation of
adesk would have had any success. The lesson from Marr and
Nishihara'sdemonstration, evenwhenlimitedtoanimals, may
bethat an image that conveys only the axis structure and axes
lengthisinsufficientforprimal access.

As noted earlier, one reason not to posit a representation sys-
tem based onfinequantitativedetail, for example, many varia-
tionsin degreeof curvature, isthat such absolutejudgmentsare
notoriously dow and error prone unless limited to the 7 + 2
valuesargued by Miller (1956). Even thismodest limitischal-
lenged when thej udgments haveto be executed over abrief 100-
msinterval (Egeth & Pachella, 1969) that issufficient for accu-
rate object identification. A further reduction in the capacity
for absolutejudgments of quantitative variations of a simple

' Absolute judgments are judgments made against a standard in
memory, for example, that Shape A is 14cm. in length. Suchjudgments
are to be distinguished from comparative judgments in which both
stimuli are available for simultaneous comparison, for example, that
Shape A, lying aongside Shape B, is longer than B. Comparative judg-
ments appear limited only by the resolving power of the sensory system.
Absolute judgments are limited, in addition, by memory for physical
variation. That the memory limitations are severe is evidenced by the
finding that comparativejudgmentscan be made quickly and accurately
for differences so fine that thousands of levels can be discriminated.
?géﬁz;cwrae absolutejudgments rarely exceed 7 + 2 categories (Miller,

* Paul Cezanne is often incorrectly cited on this point. "Treat nature
by the cylinder, the sphere, the cone, everything in proper perspective so
that each side ofan object or plane is directed towards a central point"
(Cezanne, 1904/1941, p. 234, italics mine). Cezanne was referring to
perspective, not the veridical representation of objects.



HUMAN IMAGE UNDERSTANDING 127

shapewould derive from the necessity, for most objects, to make
simultaneous absolute judgments for the severd shepes that
constitute the object's parts (Egeth & Pachella, 1969; Miller,
1956). This limitation on our capacities for making absolute
judgments of physical variation, when combined with the de-
pendence of such variation on orientation and noise, makes
guantitative shapejudgmentsamost implausible basisfor ob-
ject recognition. RBC's alternative is that the perceptual dis-
criminations required to determine the primitive components
can be made categorically, requiring the discrimination of only
two or three viewpoint-independent levels of variation.’

Our memory for irregular shapes shows clear biases toward
"regularization” (e.g., Woodworth, 1938). Amply documented
in the classical shape memory literature was the tendency for
errors in the reproduction and recognition of irregular shapes
to bein adirection of regularization, in which dight deviations
from symmetrical or regular figureswere omitted in attempts
at reproduction. Alternatively, some irregularities were empha
sized ("accentuation"), typically by the addition of a regular
subpart. What is the significance of these memory biases? By
the RBC hypothesis, these errors may have their origin in the
mapping of the perceptual input onto arepresentational system
based on regular primitives. The memory of a dight irregular
form would be coded asthe closest regul arized neighbor of that
form. If the irregularity was to be represented as well, an act
that would presumably require additional time and capacity,
then an additional code (sometimes a component) would be
added, aswith Bartlett's(1932) "schemawith correction.”

Computational Considerations: Are 36 Geons Sufficient?

Is there sufficient representational power in a set of 36 geons
to express the human's capacity for basic-level visual categori-
zations? Two estimates are needed to provide a response to this
question: (a) the number of readily available perceptual catego-
ries, and (b) the number of possible objectsthat could be repre-
sented by 36 geons. The number of possible objects that could
be represented by 36 geons will depend on the alowable re-
lationsamongthegeons. Obviously, theval uefor (b) would have
to be greater than the value for (a) if 36 geons are to prove
sufficient.

How many readily distinguishabl e objects do people know?
How might one arrive at a liberal estimate for this value? One
estimate can be obtained from the lexicon. There are lessthan
1,500 relatively common basic-level object categories, such as
chairs and elephants.’® If we assume that this estimate is too
small by afactor of 2, allowing for idiosyncratic categories and
erors in the estimate, then we can assume potential classifica-
tion into approximately 3,000 basic-level categories. RBC a5
sumes that perception is based on a particular componential
configuration rather than the basic-level category, sowe need to
estimate the mean number of readily distinguishable compo-
nential configurationsper basic-level category. Almost all natu-
ral categories, such as elephants or giraffes, have one or only a
few ingances with differing componentia descriptions. Dogs
represent a rare exception for natural categories in that they
have been bred to have considerable variation in their descrip-
tions. Categories created by people vary in the number of allow-
able types, but this number often tends to be greater than the
natural categories. Cups, typewriters, and lamps havejust afew

(in the case of cups) to perhaps 15 or more (in the case of lamps)
readily discernible exemplars" Let us assume (liberdly) that
the mean number of types is 10. Thiswould yield an estimate
of 30,000 readily discriminabl e objects (3,000 categories X 10
types/category).

A second source for the estimate derives from considering
plausible rates for learning new objects. Thirty thousand ob-
jects would require learning an average of 4.5 objects per day,
every day for 18 years, themodal age of the subjectsin the exper-
iments described below.

9 Thislimitation on our capacities for absol utejudgments also occurs
in the auditory domain in speech perception, in which the modest num-
ber of phonemes can be interpreted as arising from dichotomous or
trichotomous contrasts among a few invariant dimensions of speech
production (Miller, 1956). Examples of invariant categorized speech
features would be whether transitions are "feathered" (a cue for voicing)
or the formants "murmured” (a cue for nasality). That these features
are dichotomous alows the recognition system to avoid the limitations
of absolutejudgment in theauditory domain. It ispossible that thelim-
ited number of phonemes derives more from this limitation for access:
ing memory for hne quantitative variation than it does from limits on
thefinenessof the commands to the speech muscul ature.

%0 This estimate was obtained from three sources. (a) several linguists
and cognitive psychologists, who provided guesses of 300 to 1,000 con-
crete noun object categories; (b) the average 6-year-old child, who can
uame most of the objects seen in his or her world and on television and
has a vocabulary of less than 10000 words, about 10% of which are
concrete count nouns; and (c) a 30-page sample from Webster's Seventh
New Collegiate Dictionary, which provided perhapsthe most defensible
estimate; | counted the number of readily identifiable, unique concrete
nouns that would not be subordinate to other nouns. Thus, "wood
thrush" was not included because it could not be readily discriminated
from "sparrow," but "penguin” and "ostrich" were counted as separate
noun categories, as were borderline cases The mean number of such
nouns per page was 1.4, so given a 1,200 page dictionary, this is equiva-
lent to 1,600 noun categories.

¥ |t might be thought that faces constitute an obvious exception to
the estimate of aratio often exemplars per category presented here, in
that we can obviously recognize thousands of faces. But can we recog-
nize individual faces as rapidly as we recognize differences among basic
level categories? | suspect not. That is, we may know that it isa face and
not achair in lesstime than that required for the identification of any
particular face. Whatever the ultimate data on face recognition, there
is evidence that the routines for processing faces have evolved to differ-
entially respond tocuteness(Hildebrandt, 1982; Hildebrandt & Fitzger-
ald, 1983), age(e.g., Mark & Todd, 1985), and emotion and threats (eg.,
Coss, 1979;Trivers, 1985). Facesmay thusconstituteaspecid stimulus
cae in that specific mechanisms have evolved to respond to biologicaly
relevant quantitative variations and caution may be in order before re-
sults with face stimuli are considered characteristic of perception in gen-
eral. Another possible exception to the exemplar/category ratio pre-
sented here occurs with categories such as lamps, which could have an
arbitrarily large number of possible bases, shade types, and so on. But
these variations may actually serve to hinder recognition. In a number
of experiments in our |aboratory, we have noted that highly stylized or
unusual exemplars of a category are extremely difficult to identify under
brief exposures (and out of context). The elements producing the varia-
tion in these cases may thus be acting as noise (or irrelevant compo-
nents) in the sense that they are present in the image but not present in
themental representation for that category. These potential difficulties
in the identification effaces or objects may not be subjectively apparent
from the casual perusa of objects on a page, particularly when they are
in acontext that facilitates their classification.
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Table1

GenerativePower of 36 Geons

Value Component
36 First component (G,)

36X Second component (G

3 Size(Gi*>G,,Gi<«G2,G, = Gy)

X X
24 G, top or bottom or side (represented for 80% of the objects)
X X

2 Nature of join (end-to-end [oft center] or end-to-sde

[centered])
X
2 Join at long or short surface of G,
X X
2 Join at long or short surface of G,

Total: 74,649 possible two-geon objects

Note. With three geons, 74,649 X 36 x 57.6 = 154 million possible
objects. Equivalent to learning 23,439 new objects every day (approxi-
mately 1465/waking hr or 24/min) for 18 years.

Although the value of 4.5 objects learned per day seems rea-
sonable for achild in that it approximates the maximum rates
of word acquisition during the ages of 2-6 years (Carey, 1978),
it certainly overesimates the rate a which adults develop new
object categories. The impressive visua recognition compe-
tence of a 6-year-old child, if based on 30,000 visual categories,
would require the learning of 13.5 objects per day, or about one
per waking hour. By the criterion of learning rate, 30,000 cate-
gories would appear to be a liberal estimate.

Componential Relations: The Representational
Capacity of36 Geons

How many objects could be represented by 36 geons? This
calculation is dependent upon two assumptions: (a) the number
of geons needed, on average, to uniquely specify each object;
and (b) the number of readily discriminable relations anong
the geons. We will start with (b) and see if it will leed to an
empirically plausible value for (a). A possble set of relations is
presented in Table 1. Like the components, the properties of the
relations noted in Table 1 are nonaccidental in that they can be
determined from virtually any viewpoint, are preserved in the
two-dimensional image, and are categoricd, requiring the dis-
crimination of only two or three levels. The specification of
these five relations is likely conservative because () it is cer-
tainly anonexhaustive st in that other relations can be defined;
and (b) the relations are only specified for a pair, rather than
triples, of geons. Let us consider these relations in order of their
gppearance in Table 1.

1. Relative sze. For any pair of geons, GI and Ci, G\ could
be much greater than, smaller than, or approximately equal
toG,.

2. Verticdity. Gl can be above or below or to the Sde of G,,
a relation, by the author's estimate, that is defined for at least
80% of the objects. Thus giraffes, chairs, and typewriters have a
top-down specification of their components, but forks and

knivesdo not. The handle of acup is side-connected to the cyl-
inder.

3. Centering. The connection between any pair of joined
geons can be end-to-end (and of equal-sized cross section at the
join), asthe upper and lower arms of a person, or end-to-side,
producing one or two concavities, respectively (Marr, 1977).
Two-concavity joinsarefar morecommoninthatitisrarethat
two arbitrarily joined end-to-end components will have equal-
Szed cross sections. A more general distinction might be
whether the end of one geon in an end-to-sidejoin is centered
or off centered at the side of the other component. The end-to-
endjoin might represent only the limiting, albeit special, case
of off-centered joins. In general, thejoin of any two arbitrary
volumes (or shapes) will produce two concavities, unless an
edge from one volume is made to bejoined and collinear with
an edge from the other volume.

4. Relative size of surfaces at join. Other than the specia
cases of a sphere and a cube, all primitiveswill have at least a
long and ashort surface. Thejoin can be on either surface. The
attache casein Figure 3A and the strongbox in Figure 3B differ
by the relative lengths of the surfaces of the brick that are con-
nected to the arch (handl€). The handle on the shortest surface
produces the strongbox; on a longer surface, the attache case.
Similarly, the cup and the pail in Figures 3C and 3D, respec-
tively, differ as to whether the handle is connected to the long
surface of the cylinder (to produce a cup) or the short surface
(to produce a pail). In considering only two values for the rela
tivesizeof thesurfaceatthejoin, Lamconservatively estimating
the relational possibilities. Some volumes such as the wedge
have as many asfive surfaces, al of which can differ in size.

Representational Calculations

The 1,296 different pairsof the 36 geons(i.e., 36%), when mul -
tiplied by the number of relational combinations, 57.6 (the
product of the various values of the five relations), gives us
74,649 possible two-geon objects. If athird geon is added to the
two, then this value hasto be multiplied by 2,073 (36 geons X
57.6 ways in which the third geon can be related to one of the
two geons), toyield 154 million possible three-component ob-
jects. This value, of course, readily accommodates the liberal
estimate of 30,000 objects actually known.

The extraordinary disparity between the representational
power of two or three geons and the number of objects in an
individual'sobject vocabulary meansthat thereisan extremely
high degree of redundancy in thefilling of the 154 million cell
geon-relation space. Even with three times the number of ob-
jects estimated to be known by an individual (i.e, 90,000 ob-
jects), wewould still have less than ” of 1% of the possible com-
binations of three geons actually used (i.e., over 99.9% redun-
dancy).

There is a remarkable consequence of this redundancy if we
assume that objects are distributed randomly throughout the
object gpace. (Any function that yielded a relatively homoge-
neous distribution would serve as well.) The sparse, homoge-
neous occupation of the space means that, on average, it will be
rare for an object to have a neighbor that differs only by one
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geonor rel ation.*? Becausethe spacewasgenerated by consider-
ing only the number of possble two or three component ob-
jects,aconstrai ntontheestimateof theaveragenumber of com-
ponents per object that are sufficient for unambiguous identifi-
cation is implicated. If objects were distributed relatively
homogeneously among combinations of relations and geons,
then only two or three geons would be sufficient to unambigu-
ously represent most objects.

Experimental Support foraComponentia
Representation

According to the RBC hypothesis, the preferred input for ac-
ng object recognition isthat of the volumetric geons. In
most cases, only afew appropriately arranged geonswould be
al that isrequired to uniquely specify an object. Rapid object
recognition should then be possible. Neither the full comple-
ment of an object'sgeons, nor itstexture, nor itscolor, nor the
full bounding contour (or envelope or outline) of the object
need be present for rapid identification. The problem of recog-
nizing tens of thousands of possible objects becomes, in each
case, just a simple task of identifying the arrangement of a few
from alimited set of geons.

Several object-naming reaction time experiments have pro-
vided support for the general assumptions of the RBC hypothe-
s, although none have provided tests of the specific st of geons
proposed by RBC or even that there might be a limit to the
number of components.™®

In al experiments, subjects named or quickly verified briefly
presented pictures of common objects.™* That RBC may pro-
vide a sufficient account of object recognition was supported by
experiments indicating that objects drawn with only two or
three of their components could be accurately identified from
asingle 100-ms exposure. When shown with a complete com-
plement of components, these simple line drawings were identi-
fied almost asrapidly as full colored, detailed, textured dides of
the same objects. That RBC may provide a necessary account
of object recognition was supported by a demonstration that
degradation (contour deletion), if applied at the regions that
prevented recovery of the geons, rendered an object unidentifi-
able. All the original experimental results reported here have
received at least one, and often several, replications.

Perceiving Incomplete Objects

Biederman, Ju, and Clapper (1985) studiedtheperception of
briefly presented partial objects lacking some of their compo-
nents. A prediction of RBC was that only two or three geons
would be sufficient for rapid identification of mogt objects. If
theie was enough time to determine the geons and their re-
lations, then object identification should be possble. Complete
objects would be maximally similar to their representation and
shouldenjoy anidentification speed advantageover their partial

Stimuli

The experimental objects were line drawings of 36 common
objects, 9 of which are illustrated in Figure 11. The depiction
of the objects and their partition into components was done

subjectively, according to generally easy agreement among at
least threejudges. The artists were unaware of the st of geons
described in thisarticle. For the most part, the components cor-
responded to the parts of the object. Seventeen geon types (out
of the full st of 36), were sufficient to represent the 180 compo-
nents comprising the complete versons of the 36 objects

The objectswere shown either with their full complement of
components or partially, but never with less than two compo-
nents. Thefirst two or three components that were sdlected were
amost dwaysthe largest componentsfrom the complete object,
asillustrated in Figures 12 and 13. For example, the airplane
(Figure 13), which required nine componentsto look complete,
had the fuselage and two wings when shown with three of its
nine components. Additional components were added in de-
creasing order of size, subject to the constraint that additional
components be connected to the existing components. Occa
sionally the ordering of large-to-smal was altered when a
smaller component, such asthe eye of an animal, wasjudged to
be highly diagnostic. The ordering by sze was done under the
assumption that processng would be completed earlier for
larger components and, consequently, primal access would be
controlled by those parts. However, it might be the case that a
smadler part, if it was highly diagnostic, would have a greater
rolein controlling accessthan would be expected fromitssmall
size. The objectswere displayed in black line on awhite back-
ground and averaged 4.5' in grestest extent.

12 | nformal demonstrationssuggest that thisisthecase. Whenasingle
component or relation of an object is dtered, as with the cup and the
pail, only with extreme rarity isarecognizable object from another cate-
gory produced.

" Biederman (1985) discusses how alimit might be assessed. Among
other consequences, a limit on the number of components would imply
categorical effectswhereby quantitative variationsin the contours of an
object, for example, degree of curvature, that did not dter a compo-
nent's identity would have less of an effect on the identification of the
object than contour variations that did alter acomponent's identity.

* Our decision to use a naming task with which to assess object rec-
ognition was motivated by several considerations. Naming is asuresign
of recognition. Under the conditions of these experiments, if an individ-
ual could nametheobject, he or she must have recognized it. With other
paradigms, such as discrimination or verification, it is difficult (if not
impossible) to prevent the subject from deriving stimulus selection strat-
egies specific to the limited number of stimuli and distractors. Although
naming RTsare relatively dow, they are remarkably well behaved, with
surprisingly low variability (given their mean) for a given response and
few of the response anticipation or selection errors that occur with bi-
nary responses (especially, keypresses). Asin any task with a behavioral
measure, one hasto exert caution in making inferencesabout represen-
tations at an earlier sage. In every experiment reported here, whenever
possible, the same objects (with the same name) served in al conditions.
The data from these experiments (eg., Figures 19 and 20) were 0
closely and reasonably associated with the contour manipulations as
to preclude accounts besed on a late name-selection stage. Moreover,
providing the subjects with the set of passible names prior to an experi-
ment, which might have been expected to affect response sdlection, had
virtually no effect on performance. When objects could not be used as
their own controls, as was necessary in studies of complexity, it was
possible to experimentally or statistically control naming-stage variabil-
ity because the determinants of this variability—specificaly, name fa-
miliarity (which is highly correlated with frequency and age of acquisi-
tion) and length—are well understood.
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Figure I | . Nine of the experimental objects.

The purpose of thisexperiment was to determine whether the
first few geonsthat woul d beavailablefrom an unoccluded view
of acomplete object would be sufficient for rapid identification
of the object. We ordered the components by size and diagnos-
ticity because our interest, asjust noted, was on primal access
in recognizing a complete object. Assuming that the largest and
most diagnostic components would control this access, we stud-
ied the contribution of the nth largest and most diagnostic com-
ponent, when added to the n-1 aready existing components,
because this would more closely mimic the contribution of that
component when looking at the complete object. (Another kind
of experiment might explore the contribution of an "average’
component by balancing the ordering of the components. Such
an experiment would be relevant to the recognition of an object
that was occluded in such away that only the displayed compo-
nentswould be available for viewing.)

Complexity

The objects shown in Figure 11 illustrate the sscond major
variable in the experiment. Objects differ in complexity; by
RBC's definition, the differences are evident in the number of
components they require to look complete. For example, the
lamp, the flashlight, the watering can, the stissors, and the de-
phant require two, three, four, six, and nine components, re-
spectively. As noted previoudy, it would seem plausible that
partia objects would require more time for their identification
than complete objects, so that a complete airplane of nine com-

ponents, for example, might be more rapidly recognized than
only a partial version of that airplane, with only three of its
components. The prediction from RBC was that complex ob-
jects, by furnishing more diagnostic combinations of compo-
nents that could be simultaneously matched, would be more
rapidly identified than simple objects. This prediction is con-
trary to modelsthat assumethat objectsare recognized through
aserid contour tracing process such asthat studied by Ullman
(1983).

General Procedure

Trids were self-paced. The depression of a key on the sub-
ject's terminal initiated a sequence of exposures from three
projectors. Firdt, the corners of a 500-ms fixation rectangle (6"
wide) that corresponded to the corners of the object dide were
shown. This fixation slide was immediately followed by a 100-
ms exposure of a dide of an object that had varying numbers
of its components present. The presentation of the object was
immediately followed by a 500-ms pattern mask consiting of a
random appearing arrangement of lines. The subject's task was
to name the object as fast as possible into a microphone that
triggered avoice key. The experimenter recorded errors. Prior
to the experiment, the subjects read a list of the object names
to be used in the experiment. (Subsequent experiments revealed
that this procedure for name familiarization produced no
effect. When subjects were not familiarized with the names of
the experimental objects, results were virtually identica to
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Figure 12. Illustration of the partial and complete versions of 2 three-component objects
(the wine glass and flashlight) and | nine-component object (the penguin).

when suchfamiliarizationwasprovided. Thisfindingindicates
that the results of these experimentswere not afunction of in-
ference over a small st of objects) Even with the name famil-
iarization, all responsesthat indicated that the object wasiden-
tified were considered correct. Thus "pistol,” "revolver," "gun,”
and "handgun" were all acceptable as correct responsesfor the
same object. Reaction times (RTs) were recorded by a micro-
computer that aso controlled the projectors and provided
speed and accuracy feedback on the subject's terminal after
eech trial.

Objects were selected that required two, three, six, or nine
componentsto look complete. Therewere 9 objects for each of
these complexity levels, yielding atotal set of 36 objects. The
various combinations of the partial versions of these objects
brought the total number of experimental trials (dlides) to 99.
Each of 48 subjectsviewed al theexperimental dides, with bal-
ancing accomplished by varying the order of the dides

Results

Figure 14 shows the mean error rates as a function of the
number of components actually displayed on a given trial for
the conditions in which no familiarization was provided. Each
function is the mean for the nine objects at a given complexity
level. Although each subject saw all 99 dides, only the datafor
the first time that a subject viewed a particular object will be
discussed here. For agiven level of complexity, increasing num-
bers of components resulted in better performance, but error
rates overall were modest. When only three or four components
of the complex objects (those with six or nine components to

look complete) were present, subjects were amost 90% accu-
rate. In general, the complete objects were named without error,
0 it is necessary to look a the RTsto see if differences emerge
forthecomplexity variable.

Mean correct RTs, shown in Figure 15, provide the samegen-
eral outcome as the errors, except that there was a dight ten-
dency for the more complex objects, when complete, to have
shorter RTs than the simple objects. This advantage for the com-
plex objects was actually underestimated in that the complex
objects had longer names (three and four syllables) and were less
familiar than the simple objects. Oldfield (1966) and Oldfield
and Wingfield (1965) showed that object-naming RTs were
longer for namesthat have more syllablesor areinfrequent. This
effect of slightly shorter RTs for naming complex objects has
been replicated, and it seems safe to conclude, conservatively,
that complex objects do not require more time for their identi-
fication than simple objects. This result is contrary to what
would be expected from a serial contour-tracing process (eg.,
Ullman, 1984). Serid tracing would predict that complex ob-
jectswould require more time to be seen as complete compared
to simple objects, which have less contour to trace. The dight
RT advantage enjoyed by the complex objects is an effect that
would be expected if their additional components were afford-
ing a redundancy gain from more posshle diagnostic matches
to their representationsin memory.

Line Drawings Versus Colored Photography

The components that are postulated to be the critica units
for recognition are edge-based and can be depicted by a line
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Figure 13. Illustration of partial and complete versions of a nine-component object (airplane).

drawing. Color, brightness, and texture would be secondary
routes for recognition. From this perspective, Biederman and
Ju (1986) reasoned that naming RTs for objects shown asline
drawingsshould closdly approximate naming RTsfor those ob-
jectswhen shown as colored photographic sideswith complete
detail, color, and texture. This prediction would betrue of any
model that posited an edge-based representation mediating rec-
ognition.

In the Biederman and Ju experiments, subjects identified
brief presentations (50-100 ms) of dides of common objects™®
Each object was shown in two versons: professionaly photo-
graphed in full color or as a smplified line drawing showing
only the object's major components (such as those in Figure
11). In three experiments, subjects named the object; in a
fourth experiment a yes-no verification task was performed
againg a target name. Overdl, performance levels with the two
types of stimuli were equivalent: mean latenciesin identifying
images presented by color photography were 11 msshorter than
thedrawing but with a3.9% higher error rate.

A previously unexplored color diagnosticity distinction
among objectsalowed usto determinewhether color and light-
nesswas providing a contribution to primal access independent
of the main effect of photos versus drawings. For some kinds
of objects, such as bananas, forks, fishes, or cameras, color is
diagnostic to the object's identity. For other kinds, such as
chairs, pens, or mittens, color is not diagnostic. The detection
of a yellow region might facilitate the perception of a banana,
but the detection of the color of a chair is unlikely to facilitate
its identification, because chairs can be any color. If color was

contributing to primal access then the former kinds of objects,
for which color is diagnostic, should have enjoyed a larger ad-
vantagewhen appearinginacolor photograph, but thisdid not
happen. Objectswith adiagnostic color did not enjoy any ad-
vantagewhenthey weredisplayedascolor slidescomparedwith
their line-drawing versions. That is, showing color-diagnostic
objects such as a banana or a fork as a color dide did not confer
any advantageover theline-drawingversioncomparedwithob-
jects such as a chair or mitten. Moreover, there was no color

> An oft-cited study, Ryan and Schwartz (1956), did compare pho-
tography (black & white) against line and shaded drawings and car-
toons. But theseinvestigatorsdid not study basic-level categorization of
an object. Subjects had to determine which one of four configurations
of three objects (the positions of fivedouble-throw electrical knife swit-
ches, the cydles of a steam valve, and the fingers of a hand) was being
depicted. The subjects knew which object was to be presented on agiven
trial. For two of the three objects, the cartoonshad lower thresholdsthan
the other modes. But stimulus sampling and drawings and procedural
specifications render interpretation of this experiment problematical;
for example, the determination of the switch positions was facilitated
in the cartoons by fillingin the handles so they contrasted with the back-
ground contacts. The variability was enormous: Thresholds for agiven
form of depiction for a single object ranged across the four configura-
tions from 50 to 2,000 ms. The cartoonsdid not have lower thresholds
than the photographs for the hands, the stimulus example most fre-
quently shown in secondary sources (eg., Neisser, 1967; Hochberg,
1978; Rock, 1984). Even without a mask, threshold presentation dura-
tionswere an order of magnitude longer than was required in the present

study.
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and the number of componentsrequired for the object to appear complete (parameter). (Each pointisthe
mean for nine objects on the hrst occasion when a subject saw that particular object.)

diagnosticity advantage for the color dides on the verification
task, wherethe color of the to-be-verified object could beantici-
pated.

This failure to find a color diagnosticity effect, when com-
bined with thefinding that simple line drawingscould be identi-
fied so rapidly as to approach the naming speed of fully de-
tailed, textured, colored photographic slides, supports the
premise that the earliest accessto a mental representation of an
object can be modeled as a matching of an edge-based represen-
tation of a few simple components. Such edge-based descrip-
tionsarethussufficientfor primal access.

The preceding account should not be interpreted as suggest-
ing that the perception of surface characteristics per se are de-
layed relative to the perception of the components but merely
that in most casessurface cuesaregeneral ly lessefficient routes
for primal access That is, we may know that an image of achair
hasaparticular color and texture simultaneously with itsvolu-
metricdescription, butitisonly thevolumetric description that
providesefficient accessto the mental representation of "chair.”

It should be noted that our failuretofind abenefit from color
photography is likely restricted to the domain whereby the
edges are of high contrast. Under conditions where edge extrac-
tion isdifficult, differences in color, texture, and luminance
might readily facilitate such extraction and result in an advan-
tage for color photography.

There is one surface characteristic that deserves specia note:
the luminance gradient. Such gradients can provide sufficient
information asto aregion'ssurfacecurvature (e.g., Bed & Jain,
1986) from which the surface's convexity or concavity can be
determined. Our outline drawings lacked those gradients. Con-
sider the cylinder and cone shown in the second and fifth rows,
respectively, of Figure 7. In the absence of luminance gradients,
the cylinder and cone are interpreted as convex (not hollow).

Yet when the cylinder is used to make acup and apail in Figure
3, or the cone used to make a wine glass in Figure 12, the vol-
umes are interpreted as concave (hollow). It would thus seem to
be the case that the interpretation of hollowness—an interpreta-
tion that overrides the default value of solidity—of a volume
can be readily accomplished top-down once a representation is
elicited.

The Perception of Degraded Objects

RBC assumes that certain contours in the image are critical
for object recognition. Severd experiments on the perception
of objects that have been degraded by deletion of their contour
(Biederman & Blickle, 1985) provide evidence that these con-
tours are necessary for object recognition (under conditions
where contextual inference is not possble).

RBC holds that parsing of an object into components is per-
formed at regions of concavity. The nonaccidental relations of
collinearityandcurvilinearityalowfilling-in: They extendbro-
ken contours that are collinear or smoothly curvilinear. In con-
cert, the two assumptions of (a) parsing at concavities and (b)
filling-in through collinearity or smooth curvature lead to a
prediction as to what should be a particularly disruptive form
of degradation: If contours were deleted at regions of concavity
in such a manner that their endpoints, when extended through
collinearity or curvilinearity, bridge the concavity, then the
components would be lost and recognition should be impossi-
ble. The cup in the right column of the top row of Figure 16
provides an example. The curve of the handle of the cup is
drawn so that it is continuous with the curve of the cylinder
forming the back rim of the cup. This form of degradation, in
which the components cannot be recovered from the input
through the nonaccidental properties, isreferred to asnonrecov-
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erabledegradation and is illustrated for the objects in the right
column of Figure 16.

An equivalent amount of deleted contour in a midsection of
acurve or line should prove to be lessdisruptive as the compo-
nents could then be restored through collinearity or curvature.
In this case the components should be recoverable. Example
of recoverable forms of degradation are shown in the middle
column of Figure 16.

In addition to the procedure for deleting and bridging con-
cavities, two other gpplications of nonaccidental properties
were used to prevent determination of the components: vertex
dteration and mideading symmetry or parallelism.

Vertex Alteration

When two or more edges terminate at the same point in the
image, the visual system assumes that they are terminating at
the same point in depth and a vertex is present at that point.
Vertices are important for determining the nature of a compo-
nent (see Figure 5). As noted previously, volumetric compo-
nents will display a least one three-pronged vertex.

Thereare two ways to alter vertices. One way is by deleting a
segment of an existing vertex. For example, the T-vertex pro-
duced by the occlusion of one blade of the scissors by the other
has been converted into an L-vertex, suggesting that the bound-
ariesof the region in the image are the boundaries of that region
of the object. In the cup, the curved-T-vertex produced by the
joining of a discontinuous edge of the front rim of the cup with
the occasiond edge of the sides and back rim has been altered
to an L-vertex by deleting the discontinuous edge. With only L-
vertices, objects typicaly lose their volumetric character and

appear planar.

The other way to ater vertices is to produce them through
misleading extension of contours. Just as approximatejoins of
interrupted contours might be accepted to produce continuous
edges, if three or more contours appear to meet a a common
point when extended then a misleading vertex can be suggested.
For example, inthewatering can in theright column of Figure
11, the extensions of the contour from the spout attachment
and sprinkler appear to meet the contours of the handle and
rim, suggesting afalse vertex of fiveedges. (Such amultivertex
is nondiagnostic to a volume's three-dimensional identity [eg.,
Guzman, 1968;Sugihara, 1984].)

Misleading Symmetry or Parallelism

Nonrecoverability of components can aso be produced by
contour deletion that produces symmetry or parallelism not
characteristic of theoriginal object. For example, thesymmetry
of ova region in the opening of the watering can suggests a pla-
nar component with that shape.

Even with these techniques, it was difficult to remove con-
tours supporting al the components of an object, and some re-
mained in nominally nonrecoverable versions, aswith the han-
dleofthesdissors

Subjects viewed 35 objects, in both recoverable and nonre-
coverable versions. Prior to the experiment, all subjects were
shown severd examples of the various forms of degradation for
severd objects that were not used in the experiment. In addi-
tion, familiarization with the experimental objects was manipu-
lated between subjects. Prior to the start of the experimental
trials, different groups of sx subjects (a) viewed a 3-sec dide of
the intact version of the objects, for example, the objectsin the
left column of Figure 16, which they named; (b) were provided'
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with the names of the objects on their terminal; or (c) were given
no familiarization. As in the prior experiment, the subject's
task wasto name the objects.

A glance at the second and third columns in Figure 16 is
sufficient to reveal that one does not need an experiment to
show that the nonrecoverable objectswould be moredifficult to
identify than the recoverable versions. But we wanted to deter-
mineif thenonrecoverable versionswould beidentifiableat ex-
tremely long exposure durations (5 s) and whether the prior ex-
posure to the intact version of the object would overcome the
effects of the contour deletion. The effects of contour deletion
in the recoverable condition was aso of considerable interest
when compared with the comparable conditions from the par-
tial object experiments.

Results

The error data are shown in Figure 17. Identifiability of the
nonrecoverable stimuli was virtually impossible: The median
error rate for those dides was 100%. Subjects rarely guessed
wrong objects in this condition; most often they merely sad
that they "didn't know." When nonrecoverable objects could be
identified, it was primarily for those instances where some of
the components were not removed, as with the circular rings of
the handle of the scissors. When this happened, subjects could
name the object at 200-ms exposure duration. For the majority
of the objects, however, error rates were well over 50% with no
gainin performanceevenwith 5 sof exposureduration. Objects
in the recoverable condition were named at high accuracy at the
longer exposure durations.

As in the previous experiments, familiarizing the subjects
with the names of the objects had no effect compared with the
condition in which the subjects were given no information
about the objects. There was some benefit, however, in provid-
ingintact versionsof the pictures of the objects. Even with this
familiarity, performance in the nonrecoverable condition was
extraordinarily poor, with error ratesexceeding 60% when sub-
jectshad afull 5 stodecipher the stimulus. Asnoted previously,
even this value underestimated the difficulty of identifying ob-
jectsin the nonrecoverable condition, in that identification was
possible only when the contour deletion alowed some of the
components to remain recoverable.

The emphasis on the poor performance in the nonrecovera-
ble condition should not obscure the extensive interference that
was evident at the brief exposure durations in the recoverable
condition. The previousexperiments had established that intact
objects, without picture familiarization, could be identified at
near perfect accuracy at 100 ms. At this exposure duration in
the present experiment, error rates for the recoverable stimuli,
whose contours could be restored through collinearity and cur-
vature, averaged 65%. These high error rates at 100-ms expo-
sure duration suggest that thefilling-in processes require an im-
age (retinal or iconic)—not merely a memory representation—
and sufficient time (on the order of 200 ms) to be successfully
executed.

A Parametric Investigation of Contour Deletion

The dependence of componential recovery on the availability
and locus of contour and time was explored parametrically by
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Figure 16. Example of five stimulus objects in the experiment on the
perception of degraded objects. (The left column shows the original in-
tact versions. The middle column shows the recoverable versions. The
contours have been deleted in regions where they can be replaced
through collinearity or smooth curvature. The right column shows the
nonrecoverable versions. The contours have been deleted at regions of
concavity so that collinearity or smooth curvature of the ssgments brid-
ges the concavity. In addition, vertices have been altered, for example,
from Ys to Ls and misleading symmetry and parallelism have been
introduced.)

Biederman and Blickle (1985). In the previous experiment, it
was necessary to delete or modify the vertices in order to pro-
duce the nonrecoverable versions of the objects. The recovera
ble versions of the objects tended to have their contours deleted
in midsegment. It is possble that some of the interference in
the nonrecoverable condition was a consequence of the removal
of vertices per s, rather than the production of inappropriate
components. Contour deletion was performed either at the ver-
tices or at midsegments for 18 objects, but without the acciden-
tal bridging of components through collinearity or curvature
that was characteristic of the nonrecoverable condition. The
amount of contour removed varied from 25%, 45%, and 65%,
and the objects were shown for 100, 200, or 750 ms. Other s
pects of the procedure were identicad to the previous experi-
ments with only name familiarization provided. Figure 18
shows an example for asingle object
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FigureJ7. Mean percent errors in object naming asa function of expo-
sureduration, nature of contour deletion (recoverable vs. nonrecovera-
ble components), and familiarization (none, name, or picture). (No
differences were apparent between the none and name pretraining con-
ditions, so they have been combined into asingle function.)

Themean percent errorsare shown in Figure 19. At the brief-
est exposure duration and the most contour deletion (100-ms
exposure duration and 65% contour deletion), removal of the
vertices resulted in considerably higher error rates than the
midsegment removal, 54% and 31% errors, respectively. With
less contour deletion or longer exposures, the locus of the con-
tour deletion had only a dight effect on naming accuracy. Both
types of loc showed a consistent improvement with longer ex-
posure durations, with error ratesbelow 10% at the 750-ms du-
ration. By contrast, the error rates in the nonrecoverable condi-
tion in the prior experiment exceeded 75%, even after 5s. Al-
though accuracy was less affected by the locus of the contour
deletion at the longer exposure durations and the lower deletion
proportions, there was a consstent advantage on naming laten-
cies of the midsegment remova, as shown in Figure 20. (The
lack of an effect at the 100-msexposure duration with 65% dele-
tion islikely aconsegquence of the high error rates for the vertex
deletion stimuli.) This result shows that if contours are deleted
at avertex they can be restored, aslong as thereis no accidenta
filling-in. The greater disruption from vertex deletion is ex-
pected on the basis of their importance as diagnostic image fea
tures for the components. Overal, both the error and RT data
document a striking dependence of object identification on

what RBC assumesto be a prior and necessary stage of compo-
nential determination.

We conclude that thefilling-inof contours, whether at mid-
segment or vertex, isaprocessthat canbecompletedwithin 1s.
But the suggestion of a misleading component that bridges a
concavity through collinearity or curvature produces an image
that cannot index the original object, no matter how much time
thereisto view theimage. Figure 21 comparesanonrecoverable
version of an object (on the left) with arecoverable version, with
considerably less contour available in the latter case. That the
recoverable versionisstill identifiable showsthat the recovera-
ble objects would retain an advantage even if they had less con-
tour thanthe nonrecoverabieobjects. Notethat only four of the
components in the recoverable version can be restored by the
contours in the image, yet this is sufficient for recognition (al-
thoughwith considerable costsintime and effort). Therecover-
able version can be recognized despite the extreme distortion
intheboundingcontour andthelossof al theverticesfromthe
right sde of the object.

Perceiving Degraded Versus Partial Objects

Consider Figure 22 that shows, for some sampl e objects, one
version in which whole components are deleted so that only
three (of six or nine) of the components remain and another
verson in which the same amount of contour is removed, but
in midsegment di stributed over all of the object'scomponents.
With objects with whole components deleted, it isunlikely that
themissingcomponentsareaddedimaginally, priortorecogni-
tion. Logically, one would have to know what object was being
recognized to know what parts to add. Instead, the activation
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Figure 18. Illustration for a single object of 25, 45, and 65% contour
removal centered at either midsegment or vertex. (Unlike the nonrecov-
erableobjectsillustrated in Figure 16, vertex deletion does not prevent
identification of the object.)
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Figure IV Mean percent object naming errors as a function of locus of contour removal
(midsegment or vertex), percent removal, and exposure duration.

of a representation most likely proceeds in the absence of the
parts, with weaker activation the consequence of the missing
parts. The two methods for removing contour may thus be
affecting different stages. Deleting contour in midsegment
affects processes prior to and including those involved in the
determination of the components (see Figure 2). The removal
of whole components (the partial object procedure) is assumed
to affect the matching stage, reducing the number of common
components between the image and the representation and in-
creasing the number of distinctive componentsin the represen-
tation. Contourfilling-inistypically regarded asafast, low-level
process. We (Biederman, Beiring, Ju, & Blickle, 1985) studied
the naming speed and accuracy of six- and nine-component ob-
jects undergoing these two types of contour deletion. At brief
exposure durations (e.g., 65 ms) performance with partial ob-
jects was better than objects with the same amount of contour
removed in midsegment both for errors (Figure 23) and RTs
(Figure 24). At longer exposure durations (200 ms), the RTs
reversed, with the midsegment deletion now faster than the par-
tia objects.

Our interpretation of thisresult is that although a diagnostic

subset of a few components (a partial object) can provide a
sufficientinput for recognition, the activation of that represen-
tation is not optimal compared with acomplete object. Thus, in
the partial object experiment described previously, recognition
RTs were shortened with the addition of components to an a-
ready recognizable object. Ifall of an object's components were
degraded (but recoverable), recognition would be delayed until
contour restoration was completed. Once the fiiling-in was
completed and the complete complement of an object's geons
was activated, a better match to the object's representation
would be possible (or the elicitation of its name) than with a
partial object that had only afew of its components. The inter-
action can be modeled as a cascade in which the component-
deletion condition results in more rapid activation of the geons
but to a lower asymptote (because some geons never get acti-
vated) than the midsegment-del etion condition.

More generdly, the finding that partial complex objects—
with only three of their six or nine components present—can
be recognized more readily than objects whose contours can
be restored through filling-in documentsthe efficiency of afew
components for accessing a representation.
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Contour Deletion by Occlusion

The degraded recoverable objects in the right column of Fig-
ure 16 have the appearance of flat drawings of objects with in-
terrupted contours. Biederman and Blickle (198S) designed a
demonstration of the dependence of object recognition on com-
ponentia identification by aligning an occluding surface so that
it appeared to produce the deletions. If the components were
responsible for an identifiable volumetric representation of the
object, we would expect that with the recoverable stimuli the
object would complete itself under the occluding surface and
assume a three-dimensional character. This effect should not
occur in the nonrecoverable condition. This expectation was
met, as shown in Figures 25 and 26. These stimuli aso provide
ademonstration of the time (and effort?) requirements for con-
tour restoration through collinearity or curvature. We have not
yet obtained objective data on this effect, which may be compli-
cated by masking effects from the presence of the occluding sur-
face, but we invite the reader to share our subjective impres-
sions. When looking at a nonrecoverable version of an object

in Figure 25, no object becomes apparent. In the recoverable
version in Figure 26, an object does pop into a three-dimen-
sional appearance, but most observers report a delay (our own
estimate is approximately 500 ms) from the moment the stimu-
lusisfirst fixated to when it appears as an identifiable three-
dimensional entity.

This demonstration of the effects of an occluding surface to
produce contour interruption also provides a control for the
possibility that the difficulty in the nonrecoverable condition
was a consequence of inappropriate figure-ground groupings,
aswith the stool in Figure 16. With the stool, the ground that
was apparent through the rungs of the stool became figure in
the nonrecoverable condition. (In general, however, only a few
of the objects had holes in them where this could have been a
factor.) Figure-ground ambiguity would not invalidate the
RBC hypothesis but would complicate the interpretation of the
effects of the nonrecoverable noise, in that some of the effect
would derive from inappropriate grouping of contours into
components and some of the effect would derive from inappro-
priate figure-ground grouping. That the objects in the nonre-
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Figure 21. A comparison of a nonrecoverable version of an object (on the left) with a recoverable verson
(on the right) with half the contour of the nonrecoverable. Despite the reduction of contour the recoverable
version still enjoys an advantage over the nonrecoverable.
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Figure 22. Sample stimuli with equivalent proportion of contours
removed either at midsegments or as whole components.

coverablecondition remain unidentifiable when the contour in-
terruption is attributable to an occluding surface suggests that
figure-ground grouping cannot be the primary cause of the in-
terference from the nonrecoverable deletions.

Summary and Implications of the Experimental Results

The sufficiency of acomponent representation for primal ac-
cess to the mental representation of an object was supported by
two results: (a) that partial objects with two or three compo-
nents could be readily identified under brief exposures, and (b)
that line drawings and color photography produced compara
bleidentification performance. The experimentswith degraded
stimuli established that the components are necessary for object
perception. These results suggest an underlying principle by
which objectsareidentified.

Principle of Componential Recovery

Theresultsand phenomena associated with the effects of deg-
radation and partial objects can be understood as the workings
of asingle Principle of Componential Recovery: If the compo-
nents in their specified arrangement can be readily identified,
object identification will be fast and accurate. In addition to
those aspects of object perception for which experimental re-
search was described above, the principle of Componential re-
covery might encompass at least four additional phenomenain
object perception: (8) objects can be more readily recognized
from some orientations than from others (orientation variabil-
ity); (b) objects can be recognized from orientations not pre-
viously experienced (object transfer); (c) articulated (or de-
formable) objects, with variable Componentia arrangements,
can be recognized even when the specific configuration might
not have been experienced previously (deformable object in-
variance); and (d) novel instances of a category can be rapidly
classified (perceptual bass of basic-level categories).
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Figure 23. Mean percent errors of object naming as a function of the nature of contour
remova (deletion of midsegments or components) and exposure duration.

Orientation Variability

Objects can be more readily identified from some orienta-
tions compared with others (Palmer, Rosch, & Chase, 1981).
According to the RBC hypothesis, difficult viewswill be those
in which the components extracted from the image are not the
components (and their relations) in the representation of the
object. Often such mismatcheswill arise from an "accident" of
viewpoint where an image property is not correlated with the
property in the three-dimensional world. For example, when
the viewpoint in the image is along the axis of the major compo-
nents of the object, the resultant foreshortening converts one or
some of the components i nto surface components, such as disks
and rectanglesin Figure 27, which are not included in the com-
ponential description of the object. In addition, asillustrated in
Figure 27, the surfaces may occlude otherwise diagnostic com-
ponents. Consequently, the components extracted from the im-
age will not readily match the mental representation of the ob-
ject and identification will be much more difficult compared to
an orientation, such as that shown in Figure 28, which does
convey the components.

A second condition under which viewpoint affectsidentiliability
of a specific object arises when the orientation is simply unfamil-
iar, aswhen a sofais viewed from below or when the top-bottom
relations among the components are perturbed as when a nor-
mally upright object isinverted. Jou'coeur (1985) recently reported
that naming RTs were lengthened as a function of an object's rota-
tion away from its normally upright position. He concluded thai
mental rotation was required for the identification of such objects,
asthe effect of X-Y rotation on RTs was similar for naming and

mental rotation. It may be that mental rotation—or a more gen-
eral imaginal transformation capacity stressing working mem-
ory—isrequired only under the (rel atively rare) conditions where
the relationsamong the components have to be rearranged. Thus,
we might expect to find the equivalent of mental paper folding if
the parts of an object were rearranged and the subject's task was
to determine if agiven object could be made out of the displayed
components. RBCwould hold that thelengtheningof naming RTs
in Jolicoeur's (1985) experiment is better interpreted as an effect
that arises not from the use of orientation dependent features but
from the perturbation of the "top-of" relationsamong the compo-
nents.

Palmer et al. (1981) conducted an extensive study of the per-
ceptibility of various objects when presented at a number of
different orientations. Generally, a three-quarters front view
was most effective for recognition, and their subjects showed a
clear preferencefor such views. Palmer et @). (1981) termed this
effective and preferred orientation of the object its canonical
orientation. The canonical orientation would be, from the per-
spective of RBC, a specia case of the orientation that would
maximizethe match of the componentsin the image to the rep-
resentation of the object.

Transfer Between Different Viewpoints

When an object is seen at one viewpoint or orientation it can
often be recognized as the same object when subsequently seen
at some other orientation in depth, even though there can be
extensivedifferencesin theretinal projections of the two views.
The principle of componential recovery would hold that trans-
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figure 24. Mean correct reaction time (in milliseconds) in object naming as a function of the nature
of contour removal (deletion at midsegments or components) and exposure duration.

fer between two viewpoints would be a function of the compo-
nential similarity between the views, as long as the relations
among the components were not altered. This could be experi-
mentally tested through priming studies with the degree of
priming predicted to be a function of the similarity (viz., com-
mon minus distinctive components) of the two views. If two
different views of an object contained the same components,
RBCwould predictthat, asidefromeffectsattributabletovaria-
tionsin aspect ratio, there should be as much priming as when
the object was presented at an identical view. An alternative
possibility to componential recovery isthat a presented object
would be mentally rotated (Shepard & Metzler, 1971) to corre-
spond to the original representation. But mental rotation rates
appear to be too dow and effortful to account for the esse and
speed with which transfer occurs between different orientations
in depth of the same object.

There may be arestriction on whether a similarity function
for priming effectswill be observed. Although unfamiliar ob-
jects (or nonsense objects) should reveal a componential simi-
larity effect, the recognition of a familiar object, whatever its
orientation, may be too rapid to alow an appreciable experi-
mental priming effect. Such objects may have a representation
for each orientation that provides a different componential de-
scription. Bartram's (1974) results support this expectation
that priming effects might not be found across different views
of familiar objects. Bartram performed a series of studies in
which subjects named 20 pictures of objects over eight blocks

of trids. (In another experiment [Bartram, 1976, essentialy
the same results were found with a same-different name-
matching task in which pairs of pictures were presented.) In the
identical condition, the pictures were identical across the tria
blocks. In the different view condition, the same objects were
depicted from one block to the next but in different orienta-
tions. In the different exemplar condition, different exemplars,
for example, different instances of a chair, were presented, all
of which required the same response. Bartram found that the
naming RTsfor theidentical and different view conditions were
equivalent and both were shorter than control conditions, de-
scribed below, for concept and response priming effects. Bar-
tram theorized that observers automatically compute and ac-
cess al possible three-dimensional viewpoints when viewing a
given object. Alternativeiy, it is possble that there was high
componential similarity across the different views and the ex-
periment wasinsufficiently sensitive to detect dlight differences
from one viewpoint to another. However, in four experiments
with colored slides, we (Biederman & Lloyd, 1985) failed to ob-
tain any effect of variation in viewing angle and have thusrepli-
cated Bartram's basic effect (or lack of effect). At this point,
our inclination is to agree with Bartram's interpretation, with
somewhat different language, but restrict its scope to familiar
objects. It should be noted that both Bartram's and our results
are inconsistent with a model that assigned heavy weight to the
aspect ratio of the image of the object or postulated an underly-
ingmental rotationfunction.
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Figure25. Nonrecoverable version of an object where the contour deletion
is produced by an occluding surface.

Different Exemplars Within an Object Class

Just as we might be able to gauge the transfer between two
different views of the same object based on a componential-
based similarity metric, we might be able to predict transfer
between different exemplars of a common object, such as two
different instances of alamp or chair.

As noted in the previous section, Bartram (1974) aso in-
cluded a different exemplar condition, in which different ob-
jects with the same name—different cars, for example—were
depicted from block to block. Under the assumption that
different exemplars would be less likely to have common com-
ponents, RBC would predict that this condition would be dower
than the identical and different view conditions but faster than
a different object control condition with a new set of objects
that required different names for every trial block. This was
confirmed by Bartram.

For both different views of the same object aswell asdifferent
exemplars (subordinates) within a basic-level category, RBC pre-
dicts that transfer would be based on the overlap in the compo-
nents between the two views. The strong prediction would be that
the same smilarity function that predicted transfer between
different orientations of the same object would adso predict the
transfer between different exemplarswith the same name.

The Perceptua Basis of Basic Level Categories

Condderation of the similarity relations among different ex-
emplars with the same name raises the issue as to whether ob-

jectsaremost readily identified at abasic, asopposed to asubor-
dinateor superordinate, level of description. Thecomponential
representations described here are representations of specific,
subordinate objects, although their identification was often
measured with a basic-level name. Much of the research sug-
gesting that objects are recognized a a basic level have used
stimuli, oftennatural,inwhichthesubordinate-level exemplars
had componential descriptionsthat werehighly similartothose
for a basic-leve prototype for that class of objects. Only small
componential differences, or color or texture, distinguished the
subordinate-level objects. Thusdistinguishing Asian el ephants
from African elephants or Buicks from Oldsmobiles requires
fine discrimination for their verification. The structural de-
scriptions for the largest components would be identical. It is
not a al surprising that in these cases basic-level identification
would be most rapid. On the other hand, many human-made
categories, such as lamps, or some natural categories, such as
dogs (which have been bred by humans), have members that
have componential descriptions that differ considerably from
one exemplar to another, aswith apolelamp versus agingerjar
table lamp, for example. The same is true of objects that differ
fromtheir basic-level prototype, as penguinsor sport cars. With
such instances, which unconfound the similarity between basic-
level and subordinate-level objects, perceptual access should be
at the subordinate (or instance) level, a result supported by a
recent report by Jolicoeur, Gluck, and Kosslyn (1984). In gen-
erd, then, recognition will be at the subordinate level but will
appear to be a the basic level when the componential descrip-
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Figure 26. Recoverable version of an object where the contour deletion is produced by an occluding surface.
(The object, aflashlight, is the same as that shown in Figure 25. The reader may note that the three-
dimensional percept in this figure does not occur instantaneously.)

tionsarethe same at thetwo levels. However, the ease of percep-
tual recognition of nonprototypical exemplars, such as pen-
guins, makesit clear that recognition will be at the level of the
exemplar.

The kinds of descriptions postul ated by RBC may play acen-
tral role in children's capacity to acquire names for objects.
They may be predisposed to employ different labelsfor objects
that havedifferent geon descriptions. When the perceptual sys-
tem presents a new description for an arrangement of large
geons, the absence of activation might readily result intheques-
tion "What's that?'

For some categories, such as chairs, one can conceive of an
extraordinarily large number of instances. Do we have apriori
structural descriptions for al these cases? Obviously not. Al-
though we can recognize many visual configurationsaschairs,
itislikely that only thosefor whichthereexistsaclosestructural
description in memory will recognition be rapid. The same ca
veat that was raised about the Marr and Nishihara (1978) dem-
onstrations of pipe-cleaner animals in an earlier section must
be voiced here. With casua viewing, particularly when sup-
ported by a scene context or when embedded in an array of
other chairs, it isoften possible to identify unusual instancesas
chairs without much subjective difficulty. But when presented
asan isolated object without benefit of such contextual support,
we have found that recognition of unfamiliar exemplars re-
quires markedly longer exposure durations than those required
for familiar instances of acategory.

It takes but a modest extension of the principle of componen-

tial recovery to handle the similarity of objects. Simply put,
similar objectswill be those that have a high degree of overlap
in their components and in the relations among these compo-
nents. A similarity measure reflecting common and distinctive
components(Tversky, 1977) may beadequatefor describingthe
similarity among a pair of objects or between a given instance
and its stored or expected representation, whatever their basic-
or subordinate-level designation.

The Perception of Nonrigid Objects

Many objects and creatures, such as people and telephones,
have articul ated joints that alow extension, rotation, and even
separation of their components. There are two ways in which
such objects can be accommodated by RBC. One possibility,
as described in the previous section on the representation for
variation within a basclevd category, is that independent
structural descriptions are necessary for each sizable dteration
in the arrangement of an object's components. For example, it
may be necessary to establish a different structural description
for the left-most pose in Figure 29 than in the right-most pose.
If this was the case, then a priming paradigm might not reveal
any priming between the two stimuli. Another possibility isthat
the relationsamong the components can include a range of pos-
sible values (Marr & Nishihara, 1978). For arelation that al-
lowed complete freedom for movement, the relation might sm-
ply be "joined." Even that might be relaxed in the case of ob-
jects with separable parts, as with the handset and base of a




144 IRVING BIEDERMAN

ey

Figure28. The same object as in Figure 27, but with a viewpoint not paralel to the major components.
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Figure 29. Four configurations of a nonrigid object.

telephone. In that case, it might be either that the relation is
"nearby" or esedifferent structural descriptionsare necessary
for attached and separableconfigurations. Empirical research
needsto bedoneto determineif lessrestrictiverelations, such
as "join" or "nearby,” have measurable perceptual conse-
quences. It may bethe casethat thelessrestrictivetherelation,
the more difficult the identifiability of the object. Just asthere
appear to be canonica views of rigid objects (Palmer et a.,
1981), theremay beacanonical "configuration” foranonrigid
object. Thus, the poseson theright in Figure 29 might beidenti-
fied asawoman more slowly than would the poses on the left.

Conclusion

Toreturnto theanalogy with speech perception, the charac-
terization of object perception provided by RBC bears a close
resemblance to some current views as to how speech is per-
ceived. In both cases, the ease with which we are able to code
tens of thousands of words or objectsis solved by mapping that
input onto a modest number of primitives—55 phonemes or
36 components—and then using a representational system that
can code and access free combinations of these primitives. In
both cases, the specific st of primitivesisderived from dichoto-
mous (or trichotomous) contrasts of asmall number (lessthan
ten) of independent characteristics of the input. The esse with
which we are able to code so many words or objects may thus
derivelessfromacapacity for coding continuousphysical varia-
tionthanit doesfrom aperceptua system designed to represent
the free combination of a modest number of categorized primi-
tives based on simple perceptua contrasts.

In object perception, the primitive components may have
their originsin thefundamental principlesby whichinferences

about a three-dimensional world can be made from the edges
in a two-dimensional image. These principles constitute a Sg-
nificant portion of the corpus of Gestdt organizationa con-
straints. Given that theprimitivesarefittingsimpleparsed parts
of an object, the constraints toward regularization characterize
not the complete object but the object's components. RBC thus
provides, for the first time, an account of the heretofore unde-
cided relation between these principles of perceptual organiza-
tionand human pattern recognition.
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